RESUMO
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
RESUMO
Inspired by the unique structure and function of the natural chloride channel (ClC) selectivity filter, we present herein the design of a ClC-type single channel molecule. This channel displays high ion transport activity with half-maximal effective concentration, EC50 , of 0.10â µM, or 0.075â mol % (channel molecule to lipid ratio), as determined by fluorescent analysis using lucigenin-encapsulated vesicles. Planar bilayer lipid membrane conductance measurements indicated an excellent Cl- /K+ selectivity with a permeability ratio P Cl - ${{_{{\rm Cl}{^{- }}}}}$ /P K + ${{_{{\rm K}{^{+}}}}}$ up to 12.31, which is comparable with the chloride selectivity of natural ClC proteins. Moreover, high anion/anion selectivity (P Cl - ${{_{{\rm Cl}{^{- }}}}}$ /P Br - ${{_{{\rm Br}{^{- }}}}}$ =66.21) and pH-dependent conductance and ion selectivity of the channel molecule were revealed. The ClC-like transport behavior is contributed by the cooperation of hydrogen bonding and anion-π interactions in the central macrocyclic skeleton, and by the existence of pH-responsive terminal phenylalanine residues.
RESUMO
An artificial channel molecule 1 that mimics the shape and function of the ClC channel selective pore was described. To facilitate the transport of chloride along a unimolecular pathway, anion-π interactions were introduced as the noncovalent driving force. The hourglass-like shape of 1 was constructed with 1,3-alternate tetraoxacalix[2]arene[2]triazine as the narrowest (central) unit. Two diglycolamine-linked imide arms were tethered as the extending part, and phenylalanine moieties were fixed as the terminal anchoring groups. The ion transport activity was examined by a combination of vesicle and planar bilayer conductance techniques (BLM). The fluorescence analysis on the vesicle indicated that 1 is an efficient chloride transporter with high activity (EC50 = 1.50 µM; 1/lipid = 1:89). The ion channel characteristics were confirmed by BLM measurements, showing an average conductance of 20.8 ± 1.0 pS in symmetric KCl solutions (cis/trans = 1.0 M/1.0 M). Anion/cation selectivity with a permeability ratio PCl-/PK+ = 1.90 in an asymmetric KCl solution (cis/trans = 1.0 M/0.25 M) and anion/anion selectivity with PCl-/PBr- = 22.83 in a KCl/KBr solution (cis/trans = 1.0 M KCl/1.0 M KBr) were demonstrated.
RESUMO
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Assuntos
Proteínas Mitocondriais/metabolismo , Edição de RNA , Zea mays/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Mutação , Biogênese de Organelas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Zea mays/crescimento & desenvolvimento , Zea mays/ultraestruturaRESUMO
Anion transmembrane transport mediated by novel noncovalent interactions is of central interest in supramolecular chemistry. In this work, a series of oxacalix[2]arene[2]triazine-derived transporters 1 and 2 bearing anion-π-, hydrogen-, and halogen-bonding sites in rational proximity were designed and synthesized by a one-pot strategy starting from gallic acid ester derivatives and mono- or di-halogen-substituted triazines. 1H NMR titrations demonstrated efficient binding of 1 and 2 toward Cl- and Br- in solution, giving association constants in the range of 102-104 M-1. Cooperation of anion-π, hydrogen, and halogen bonding was revealed as a driving force for anion binding by single-crystal structures of two complexes and density functional theory calculations. Fluorescence assays indicated that compounds 1 are efficient chloride transporters with effective concentrations (EC50) falling in the range of 3.1-7.4 µM and following an order of 1a > 1b > 1c > 1d. The contribution of halogen bonding and cooperative noncovalent bonds to ion transport was then discussed. Significantly, transporters 1 exhibit high anticancer activity. In the presence of 1 and KCl (60 mM), the cell survival of HCT116 reduces to 11.9-24.9% with IC50 values in the range of 52.3-66.4 µM.
RESUMO
Pentatricopeptide repeat (PPR) proteins comprise a large family of sequence-specific RNA binding proteins in land plants. Because of its large family size and frequent embryo lethality in the mutants, molecular functions and physiological roles of many PPR proteins are unknown. Through characterization of an empty pericarp9 (emp9) mutant in maize (Zea mays), we defined the functions of EMP9 in mitochondrial RNA editing, respiratory complex formation and seed development. Mu insertions in different regions of Emp9 facilitated dissection of the domain functions of the EMP9. Through genetic and functional analyses of multiple alleles, we showed that deletions of two N-terminal PPR motifs and partial E+ domain do not eliminate the editing function of EMP9. Emp9 encodes an E+ subclass PPR protein that is localized in mitochondria. Loss of EMP9 function abolishes the C-to-U editing of ccmB-43 and rps4-335 sites in mitochondria. The loss of editing at ccmB-43 and rps4-335 affects the maturation of cytochrome c and impairs the biogenesis of mitochondrial respiratory complexes, particularly complex III. This work extends our understanding of PPR-E+ protein in editing function and seed development, and provides insights into the molecular function of mitochondrial CcmB protein in higher plants.
Assuntos
Mitocôndrias/metabolismo , Biogênese de Organelas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Edição de RNA/genética , Sementes/genética , Zea mays/embriologia , Zea mays/genética , Alelos , Arabidopsis/genética , Sequência de Bases , Endosperma/embriologia , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação com Perda de Função , Plantas Geneticamente Modificadas , Sementes/embriologiaRESUMO
Great progresses have been made in fundamental and clinical stem cell research in China in recent years. The official policy on stem cells, which was announced in 2015, seems as the spring of stem cell therapy in China. However, the regulation, governance, and management of clinical expectations are still challenging. This review summarized the current stem cell research and development in the field, as well as its rapidly evolving commercial, regulatory and ethical environment in China. As expected, the prospects of stem cells in China look prospective.
Assuntos
Pesquisa com Células-Tronco , China , Estudos Prospectivos , Transplante de Células-TroncoRESUMO
To discover novel fluoroquinolone lead compounds as possible anti-infective or/and antitumor chemotherapies, combination principle of pharmacophore-based drug design, a series of novel tricyclic fluoroquinolone title compounds, [1,2,4]triazino[3,4-h][1,8]naphthyridine-8-one-7-carboxylic acid derivatives ( 5a-5p), were designed and synthesized with a fused [1,2,4]-triazine ring unit. Their structures were characterized by spectral data and elemental analysis and the in vitro antibacterial and anti-cell proliferation activities were also evaluated. The results showed that the titled compounds exhibited more significant inhibitory activities against drug-resistant bacteria (Methicillin-resistant Staphylococcus aureus and multi drug-resistant Escherichia coli strains) and three tested cancer cell lines (human hepatoma SMMC-7721, murine leukemia L1210 and human murine leukemia HL60 cells). Interestingly, SAR showed that compounds with electron-donating groups attached to benzene ring had stronger antibacterial activity than antitumor activity, but electron-withdrawing compounds displayed more potential antitumor activity than antibacterial activity, especially antitumor activity of nitro compounds was comparable to comparison doxorubicin. Thus, novel triazine-fused tricyclic fluoroquinolones as potent anti-infective or/and antitumor lead compounds are valuable to pay attention and for further development.
Assuntos
Antibacterianos/química , Antineoplásicos/química , Desenho de Fármacos , Fluoroquinolonas/química , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Ácidos Carboxílicos , Carcinoma Hepatocelular , Linhagem Celular , Proliferação de Células , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/síntese química , Células HL-60 , Humanos , Leucemia L1210 , Neoplasias Hepáticas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Naftiridinas , TriazinasRESUMO
To discover an efficient strategy for the conversion of the antibacterial activity of fluoroquinolones into the antitumor activity, the three series of C-3 s-triazole-based derivatives including sulfide ketones (6a-6g), thiosemicarbazones (7a-7g) and fused heterocyclic thiazolotriazoles (8a-8g) were synthesized from ciprofloxacin (1), respectively. The structures were characterized by elemental analysis and spectral data. The antitumor activity was tested against three tumor cell lines (Hep-3B, Capan-1 and HL60) using the MTT assay. The three types of compounds all exhibited stronger anti-proliferative activities than ciprofloxacin in the test. The order of their activities was in compounds 7>8>6, and the order of selectivity against cancer cell lines was Capan-1, Hep-3B and HL60. Meanwhile, the SAR revealed that some compounds with electron-drawing group substituted such as fluoro- and nitro-phenyl compounds (6f, 7f, 8f) and (6g, 7g, 8g) displayed more significant activity than the control compounds, especially the IC50 values of thiosemicarbazone compounds 7f and 7g against Capan-1 was comparable to doxorubicin. Thus, a five-membered triazole as the C-3 bioisostere modified with the functionalized side-chain of sulfide-ketone thiosemicarbazone warrants special attention and further investigation.
Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/química , Cetonas/farmacologia , Triazóis/farmacologia , Antibacterianos/química , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Células HL-60 , Humanos , Sulfetos/farmacologiaRESUMO
To discover novel antitumor rhodanine unsaturated ketones, a series of fluoroquinolone (rhodanine α, ß-unsaturated ketone) amine derivatives (5a-5r) were designed and synthesized with fluoroquinolone amide scaffold as a carrier. The structures of eighteen title compounds were characterized by elemental analysis, 1H NMR and MS. The in vitro anti-proliferative activity against Hep-3B, Capan-1 and HL60 cells was evaluated by MTT assay. The results showed that the title compounds not only had more significant anti-proliferative activity against three tested cancer cell lines than that of the parent ciprofloxacin 1, but also exhibited the highest activity against Capan-1 cells. The SAR revealed that some compounds carrying aromatic heterocyclic rings or phenyl attached to an electron-withdrawing carboxyl or sulfonamide substituent were comparable to or better than comparison doxorubicin against Capan-1 cells. As such, it suggests that fluoroquinolone (rhodanine α, ß-unsaturated ketone) amines are promising leads for the development of novel antitumor fluoroquinolones or rhodanine analogues.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Fluoroquinolonas/síntese química , Fluoroquinolonas/farmacologia , Amidas/síntese química , Amidas/farmacologia , Linhagem Celular Tumoral , Células HL-60 , Humanos , Cetonas/síntese química , Cetonas/farmacologia , Rodanina/síntese química , Rodanina/farmacologiaRESUMO
To discover novel antitumor fluoroquinolone lead compounds from a rational modification for antibacterial fluoroquinolones, a fused heterocyclic ketone corresponding to thiazolo[2,3- b][1,2,4]triazolone used as a bioisosteric replacement of the C-3 carboxylic acid group of ciprofloxacin 1, and further modification by a Claisen condensation reaction with substituted benzaldehydes formed novel fluoroquinolone C-3 fuse heterocyclic α, ß-unsaturated ketones as the title compounds (6a-6r), separately. The structures of eighteen title compounds were characterized by elemental analysis, 1H NMR and MS, and the in vitro anti-proliferative activity against human hepatoma Hep-3B cells, pancreatic Capan-1 cells and leukemia HL60 cells was evaluated by a MTT assay. The preliminary results showed that the title compounds not only had more significant anti-proliferative activity against three tested cancer cell lines than that of the parent ciprofloxacin 1, but also exhibited the highest activity against Capan-1 cells. In particular, compounds carrying an electron-withdrawing carboxyl (6k, 6m) or sulfonamide substituent (6q, 6r) attached to benzene ring were comparable to or better than constractive drug doxorubicin against Capan-1 cells. As such, it suggests that it is favorable for a fused heterocyclic α, ß-unsaturated ketone scaffold instead of the C-3 carboxylic acid group to improve the antitumor activity of fluoroquinolones.
Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/análogos & derivados , Fluoroquinolonas/farmacologia , Cetonas/farmacologia , Antibacterianos , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Fluoroquinolonas/síntese química , Células HL-60 , Humanos , Relação Estrutura-AtividadeRESUMO
1,3,4-Thiadiazole and urea group were hybridized to form new molecular skeleton and 11 compounds were synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Most of them showed comparable effects in inhibition of AChE, especially compound 6b which exhibited activity with IC50 value 1.17 µM, as strong as galanthamine. This information offered by our research would be valuable for further investigation of structure-activity relationship (SAR) and useful in future research of AChE inhibitors.
Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Tiadiazóis/farmacologia , Ureia/análogos & derivados , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Ureia/síntese química , Ureia/química , Ureia/farmacologiaRESUMO
To explore an efficient strategy for the conversion of antibacterial fluoroquinolones into antitumor fluoroquinolones, an azole heterocyclic ring of oxadiazole instead of the C-3 carboxylic acid group with a functionalized hydrazone group as a modified side-chain, fifteen novel 2-(fluoroquinolon-3-yl)-oxadiazole-5- sulfanylacetylhydrazone derivatives 7a-7o were designed and synthesized on the basis of the pharmacophore hybridization principle from pefloxacin, separately. The structures for fifteen title compounds were characterized by elemental analysis, 1H NMR and MS, and their in vitro antitumor activity against Hep-3B cell line was evaluated by a MTT assay. The results showed that the title compounds exhibited more significantly inhibitory activity than that of the parent pefloxacin, in which compounds with electron-withdrawing group attached on aryl ring had more potency than that of compounds with electron donating group, especially compounds with a carboxylic substituent were comparable to comparison doxorubicin. It suggests that it is favorable for an improvement of antitumor activity to remain a carboxylic acid unit at the aromatic ring.
Assuntos
Antineoplásicos/química , Fluoroquinolonas/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Oxidiazóis/química , Relação Estrutura-AtividadeRESUMO
According to the structure-activity relationships (SARs) of modafinil, a therapeutic drug of hypnolepsy, we designed and synthesized two series of compounds 2-[(diphenylmethane)sulfinyl] acetamides and 2-[(diphenylmethyl)thio] acetamides, and measured their biological activities. The target compounds (6a-6o) were synthesized beginning with diphenyl carbinol by substitution, oxidation, acylation and so on. Their structures were confirmed by ESI-MS, 1H NMR and elemental analysis. The central stimulatory effects of the target compounds were determined by the independent activity assay on mice. Compounds 6c, 6f and 6n have considerable activities, while the central stimulative effect of 6h is slightly better than the positive control modafinil.
Assuntos
Acetamidas/síntese química , Compostos de Bifenilo/síntese química , Metano/síntese química , Promotores da Vigília/síntese química , Acetamidas/química , Acetamidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Metano/química , Metano/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Modafinila , Distribuição Aleatória , Relação Estrutura-Atividade , Promotores da Vigília/química , Promotores da Vigília/farmacologiaRESUMO
An arm modification strategy, by replacing relatively rigid, electron-deficient side arms with flexible ether chain arms and linking them onto a tetraoxacalix[2]arene[2]triazine skeleton, was utilized to design an artificial molecular hourglass. The planar bilayer experiments confirmed the unimolecular channel mechanism and suggested reversed ion selectivity from the previously reported anion selectivity to weak cation selectivity.
RESUMO
Recent experimental and observational research has suggested that childhood allergic asthma and other conditions may be the result of prenatal exposure to environmental contaminants, such as di-(2-ethylhexyl) phthalate (DEHP). In a previous epidemiological study, we found that ancestral exposure (F0 generation) to endocrine disruptors or the common plasticizer DEHP promoted allergic airway inflammation via transgenerational transmission in mice from generation F1 to F4. In the current study, we employed a MethylationEPIC Beadchip microarray to examine global DNA methylation in the human placenta as a function of maternal exposure to DEHP during pregnancy. Interestingly, global DNA hypomethylation was observed in placental DNA following exposure to DEHP at high concentrations. Bioinformatic analysis confirmed that DNA methylation affected genes related to neurological disorders, such as autism and dementia. These results suggest that maternal exposure to DEHP may predispose offspring to neurological diseases. Given the small sample size in this study, the potential role of DNA methylation as a biomarker to assess the risk of these diseases deserves further investigation.
Assuntos
Asma , Dietilexilftalato , Disruptores Endócrinos , Doenças do Sistema Nervoso , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Feminino , Camundongos , Humanos , Criança , Dietilexilftalato/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Placenta , Exposição Materna/efeitos adversos , Epigênese Genética , Asma/induzido quimicamente , Asma/epidemiologia , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/genéticaRESUMO
To explore an efficient strategy for further development of anticancer fluoroquinolone candidates derived from ciprofloxacin, a heterocyclic ring as the bioisosteric replacement of C3 carboxyl group led to a key intermediate, oxadiazole thiol (5), which was further modified to the bis-oxadiazole methylsulfides (7a-7h) and the corresponding dimethylpiperazinium iodides (8a-8h), respectively. Structures were characterized by elemental analysis and spectra data, and their anticancer activities in vitro against CHO, HL60 and L1210 cancer cells were also evaluated by MTT assay. The preliminary results show that piperazinium compounds (8) possess more potent activity than that of corresponding free bases (7).
Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/química , Desenho de Fármacos , Piperazinas/síntese química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Células HL-60 , Humanos , Concentração Inibidora 50 , Leucemia L1210 , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/farmacologia , Piperazina , Piperazinas/química , Piperazinas/farmacologiaRESUMO
An efficient modified route based on the targeting mechanism of antibacterial fluoroquinolones for the shift from the antibacterial activity to the antitumor one was further developed. Using a fused heterocyclic ring, s-triazolothiadiazine as a carboxyl bioisostere of ciprofloxacin, the title compounds, 1-cyclopropyl-6-fluoro-7-piperazin-1-yl-3-(6-substituted-phenyl-7H-[1, 2, 4]triazolo[3, 4-b][1, 3, 4]thiadiazin-3-yl)-quinolin-4(1H)-ones (5a-5e) and their corresponding N-acetyl products (6a-6e), were designed and synthesized, separately. Meaningfully, a ring-contraction of fused six-membered thiadiazine occurred by a sulfur extrusion reaction gave new tri-acetylated fused heterocycles related to pyrazolo[5, 1-c][1, 2, 4] triazoles (7a-7e). The in vitro antitumor activity against L1210, CHO and HL60 cell lines was also evaluated for the synthesized fifteen heterocycles compared to parent ciprofloxacin by methylthiazole trazolium (MTT) assay. Interestingly, the results displayed that fifteen fused heterocyclic compounds showed more significant growth inhibitory activity (IC50 < 25.0 micromo x L(-1)) than that of parent ciprofloxacin (IC50 > 150.0 micromol x L(-1)), and the active order decreased from 7a-7e to 5a-5e to 6a-6e, respective.
Assuntos
Antineoplásicos/síntese química , Fluoroquinolonas/síntese química , Tiadiazinas/síntese química , Triazóis/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Cricetinae , Cricetulus , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Células HL-60 , Humanos , Concentração Inibidora 50 , Leucemia L1210/patologia , Camundongos , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologia , Triazóis/química , Triazóis/farmacologiaRESUMO
A new innovative approach is essential for early and effective diagnosis of gastric cancer, using promoter hypermethylation of the tumor suppressor, SOCS-1, that is frequently inactivated in human cancers. We have developed an amplification-free fiber optic nanoplasmonic biosensor for detecting DNA methylation of the SOCS-1 human genome. The method is based on the fiber optic nanogold-linked sorbent assay of PCR-free DNA from human gastric tumor tissue and cell lines. We designed a specific DNA probe fabricated on the fiber core surface while the other probe is bioconjugated with gold nanoparticles in free form to allow percentage determination and differentiating the methylated and unmethylated cell lines, further demonstrating the SOCS-1 methylation occurs in cancer patients but not in normal cell lines. The observed detection limit is 0.81 fM for methylated DNA, and the detection time is within 15 min. In addition, our data were significantly correlated to the data obtained from PCR-based pyrosequencing, and yet with superior accuracy. Hence our results provide new insight to the quantitative evaluation of methylation status of the human genome and can act as an alternative to PCR with a great potential.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Gástricas , Ilhas de CpG , DNA/metabolismo , Metilação de DNA , Ouro , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismoRESUMO
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin ß15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.