Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667382

RESUMO

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Assuntos
Envelhecimento/imunologia , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Citoplasma/imunologia , Proteína Quinase Ativada por DNA/imunologia , DNA/imunologia , Inflamação/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/imunologia , Proliferação de Células/fisiologia , Reparo do DNA/imunologia , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células U937
2.
Eur J Immunol ; 50(3): 426-438, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808546

RESUMO

Although CD4+ CD45RA- Foxp3l ° cytokine-secreting T cells (Fr.III cells) have been reported to be increased in systemic lupus erythematosus (SLE), their function and effects on response of B cells are still unclear. Here, we dissect how BACH2 regulates Fr.III cells function and promotes B-cell response in active SLE patients. We measured cytokines and BACH2 expression, and found that Fr.III cells from SLE patients produce much more inflammatory cytokines and were more able to promote B- cell proliferation, IgG, IgA, and TNF-α production than controls in a co-culture system. Fr.III cells expressed high levels of ICOS and CD154, but a low level of Tfr and BACH2, BACH2 expression was negatively correlated with SLE Disease Activity Index. Overexpressed of BACH2 in Fr.III cells, decreased cytokines expression and reduced B-cell response. Furthermore, we identified a reduction of H3K27ac level binding at the BACH2 locus in the SLE Fr.III cells and SLE serum stimulation decreased H3K27ac binding at the BACH2 locus, which could be restored using trichostatin A (TSA). In conclusion, BACH2 was associated with SLE disease activity, regulated the function of Fr.III cells, and promoted B-cells response. Targeting BACH2 may be a new immune intervention therapy of SLE.


Assuntos
Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade
3.
Plant J ; 76(4): 557-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23952714

RESUMO

Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis.


Assuntos
Evolução Biológica , Genoma de Planta , Nelumbo/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Nelumbo/crescimento & desenvolvimento , Dormência de Plantas/genética , Sementes/crescimento & desenvolvimento , Seleção Genética , Análise de Sequência de DNA , Amido/biossíntese
4.
PLoS One ; 19(6): e0302313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829862

RESUMO

The aquatic perennial herb Sagittaria trifolia L. commonly known as arrowhead, has been utilized in China both as a culinary vegetable and in traditional medicines. Characterizing the phylogenetic relationships and genetic diversity of arrowheads is crucial for improved management, conservation, and efficient utilization of the germplasm resources associated with this species. Herein, we presented the phenotypic traits and genome-wide DNA marker-based analyses of 111 arrowhead accessions, most of which were from China. Cluster analysis revealed that arrowhead could be categorized into two clusters based on 11 phenotypic traits, with Cluster 1 comprising two subclusters. All accessions were clustered into three sub-clusters based primarily on leaf shape and tuber weight. A set of 759,237 high-quality single-nucleotide polymorphisms was identified and used to assess the phylogenetic relationships. Population structure and phylogenetic tree analyses suggested that the accessions could be classified into two major groups, Group I was further subdivided into two subgroups, aligning with the clusters identified through morphological classification. By employing Sagittaria lichuanensis as an outgroup, the rooted tree revealed that the evolutionary relationships within the three groups followed a progression from Group I-1 to Group I-2 and finally to Group II. The landraces were clustered into one group along with the remaining wild accessions. The level of genetic diversity for Group I (π = 0.26) was slightly lower than that which was estimated for Group II (π = 0.29). The lowest pairwise differentiation levels (Fst, 0.008) were obtained from the comparison between groups I-2 and II, indicating that the two groups were the most closely related. This study provides novel insights into germplasm classification, evolutionary relationships, genomics and arrowhead breeding.


Assuntos
Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Sagittaria , Sagittaria/genética , Sagittaria/classificação , Sagittaria/anatomia & histologia , Variação Genética , China , Marcadores Genéticos
5.
Arthritis Rheum ; 64(11): 3715-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22736314

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) function to fine-tune the control of immune cell signaling. It is well established that there are abnormalities in the interleukin-2 (IL-2)-related signaling pathways in systemic lupus erythematosus (SLE). The miR-31 microRNA has been found to be markedly underexpressed in patients with SLE, and thus the present study was undertaken to investigate the role of miR-31 in IL-2 defects in lupus T cells. METHODS: Expression levels of miR-31 were quantitated using TaqMan miRNA assays. Transfection and stimulation of cultured cells followed by TaqMan quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and reporter gene assays were conducted to determine the biologic function of miR-31. NF-AT nuclear translocation and expression were quantitatively measured using an ImageStream cytometer. Bioinformatics analysis, small interfering RNA (siRNA) knockdown, and Western blotting were performed to validate miR-31 targets and effects. RESULTS: The expression of miR-31 was significantly decreased in lupus T cells, and this was positively correlated with the expression of IL-2. Overexpression of miR-31 in T cells increased the production of IL-2 by altering NF-AT nuclear expression and IL2 promoter activity, while knockdown of endogenous miR-31 reduced IL-2 production. RhoA expression was directly repressed by miR-31 in T cells. Of note, siRNA-mediated knockdown of RhoA enhanced IL2 promoter activity and, consequently, up-regulated IL-2 production. RhoA expression was consistently up-regulated and negatively correlated with the levels of miR-31 in lupus T cells. Manipulation of miR-31 expression in lupus T cells restored the expression of IL-2 at both the messenger RNA and protein levels. CONCLUSION: MicroRNA-31 is a novel enhancer of IL-2 production during T cell activation. Dysregulation of miR-31 and its target, RhoA, could be a novel molecular mechanism underlying the IL-2 deficiency in patients with SLE.


Assuntos
Interleucina-2/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , MicroRNAs/imunologia , Linfócitos T/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-2/deficiência , Interleucina-2/imunologia , Células Jurkat , Lúpus Eritematoso Sistêmico/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/imunologia
6.
Blood ; 116(26): 5885-94, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20852130

RESUMO

The recent discovery of microRNAs (miRNAs) has revealed a new layer of gene expression regulation, affecting the immune system. Here, we identify their roles in regulating human plasmacytoid dendritic cell (PDC) activation. miRNA profiling showed the significantly differential expression of 19 miRNAs in PDCs after Toll-like receptor 7 (TLR7) stimulation, among which miR-155* and miR-155 were the most highly induced. Although they were processed from a single precursor and were both induced by TLR7 through the c-Jun N-terminal kinase pathway, miR-155* and miR-155 had opposite effects on the regulation of type I interferon production by PDC. Further study indicated that miR-155* augmented interferon-α/ß expression by suppressing IRAKM, whereas miR-155 inhibited their expression by targeting TAB2. Kinetic analysis of miR-155* and miR-155 induction revealed that miR-155* was mainly induced in the early stage of stimulation, and that miR-155 was mainly induced in the later stage, suggesting their cooperative involvement in PDC activation. Finally, we demonstrated that miR-155* and miR-155 were inversely regulated by autocrine/paracrine type I interferon and TLR7-activated KHSRP at the posttranscriptional level, which led to their different dynamic induction by TLR7. Thus, our study identified and validated novel miRNA-protein networks involved in regulating PDC activation.


Assuntos
Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , MicroRNAs/fisiologia , Receptor 7 Toll-Like/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imunoprecipitação , Interferon Tipo I/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo
7.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35326120

RESUMO

Field blanching is a process used in agriculture to obtain sweet, delicious, and tender stems of water dropwort by obstructing sunlight. The nutritional and transcriptomic profiling of blanched water dropwort has been investigated in our previous studies. However, the effect of blanching on the production of secondary metabolites and different vitamins in water dropwort has not been investigated at the transcriptomic level. This study explored the transcriptomic variations in the phenylpropanoid biosynthesis, flavonoid biosynthesis, and different vitamin biosynthesis pathways under different blanching periods in the water dropwort stems (pre-blanching, mid-blanching, post-blanching, and control). The results show that polyphenol and flavonoid contents decreased; however, the contents of vitamins (A, B1, B2, and C) and antioxidant activity increased significantly after blanching. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of blanched water dropwort showed the downregulation of many important genes involved in phenylpropanoid and flavonoid biosynthesis pathways, and the downregulation of these genes might be the reason for the reduction in polyphenol and flavonoid contents. We also examined and highlighted the genes involved in the higher vitamin content, antioxidant activity, pale color, tenderness, and sweetness of the blanched stem of water dropwort. In conclusion, the present study explored the role of phenylpropanoid and vitamin biosynthesis, and it will provide a basis for future investigation and application in the blanch cultivation of water dropwort.

8.
Materials (Basel) ; 15(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35591597

RESUMO

Cobalt-chromium (Co-Cr) alloys have been widely used as dental-restoration materials for many years. This study sought to investigate whether selective laser melting (SLM) is a more appropriate process than traditional casting (CAST) for fabricating dental Co-Cr alloys. Metallurgical microscopy, X-ray photoelectron spectroscopy (XPS), Vickers hardness and nanoindentation tests, and friction and wear tests were used to evaluate the microstructure, surface compositions, mechanical properties, and wear resistance, respectively. Additionally, the biocompatibilities and cell adhesion of the alloys were evaluated with L-929 fibroblasts via CCK-8 assay, Live/Dead staining, flow cytometric analysis, scanning electron microscopy (SEM) observation and real-time PCR (RT-PCR) assay. The XPS results showed that the two alloys were all mainly comprised of Co, Cr, and O. The hardness in the CAST group equaled 7.15 ± 0.48 GPa, while in the SLM group, it equaled 9.06 ± 0.49 GPa. The friction coefficient of SLM alloys remained at approximately 0.46, but the CAST specimens fluctuated significantly. SLM alloys exhibited shallower wear scars and less wear debris compared with CAST alloys, simultaneously. Additionally, there were higher survival and expression of cell-adhesion-related genes on SLM alloys of L-929 cells, which meant that the deleterious effect on L-929 cells was significantly reduced compared with that for the CAST alloys. Overall, the wear resistances and biocompatibilities of the Co-Cr dental alloys were dramatically affected by the fabrication technique. The SLM technique is advantageous over the CAST technique for fabricating Co-Cr dental alloys.

9.
Arthritis Rheum ; 62(11): 3425-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20589685

RESUMO

OBJECTIVE: MicroRNA (miRNA) have received increasing attention as posttranscriptional regulators that fine-tune the homeostasis of the inflammatory response. This study aimed to clarify whether miR-125a, which was identified in a pilot expression profiling step, is involved in the inflammatory chemokine pathway in systemic lupus erythematosus (SLE). METHODS: Independent verification of miR-125a expression in amplified samples from SLE patients and normal controls was performed by TaqMan quantitative polymerase chain reaction (PCR) analysis. A combination of 3 bioinformatic prediction techniques and reporter gene assays was used to identify miR-125a targets. In vitro systems of overexpression by transfection and inducible expression by stimulation were performed to investigate the function of miR-125a, which was followed by real-time quantitative PCR and enzyme-linked immunosorbent assay. RESULTS: In SLE patients, the expression of miR-125a was reduced and the expression of its predicted target gene, KLF13, was increased. Bioinformatics predicted that miR-125a base-paired with sequences in the 3'-untranslated region of KLF13. Overexpression of miR-125a led to a significant reduction in the expression of RANTES and KLF13. MicroRNA-125a inhibited endogenous KLF13 expression in a dose-dependent manner, as determined using gain- and loss-of-function methods. A luciferase reporter system confirmed the miR-125a binding sites. Notably, miR-125a expression was induced in T cells in a dose- and time-dependent manner. Finally, the introduction of miR-125a into T cells from SLE patients alleviated the elevated RANTES expression. CONCLUSION: MicroRNA-125a negatively regulates RANTES expression by targeting KLF13 in activated T cells. The underexpression of miR-125a contributes to the elevated expression of RANTES in SLE. Our findings extend the role of miRNA in the pathogenesis of lupus and provide potential strategies for therapeutic intervention.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quimiocina CCL5/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quimiocina CCL5/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Fatores de Transcrição Kruppel-Like/genética , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Linfócitos T/metabolismo , Fatores de Tempo
10.
Clin Rheumatol ; 40(3): 1103-1112, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32797360

RESUMO

OBJECTIVES: Decreased natural killer (NK) cells have been reported in systemic lupus erythematosus (SLE) patients. However, the role of NK cells in the pathogenesis of SLE is not well understood. In this study, we aimed to characterize NK cell subsets, phenotypes, and cytokine-secreting functions and investigate the clinical relevance of NK cells in SLE patients. METHODS: Peripheral blood samples from 81 SLE patients and 59 healthy donors (HDs) were collected. The frequency and phenotype of NK cells were measured by flow cytometry. Intracellular interferon-γ (IFN-γ) production by NK cells was evaluated by flow cytometry after stimulation with interleukin-12 (IL-12) and IL-18. RESULTS: The percentages of NK cells in the peripheral blood of SLE patients were significantly lower than those in HDs, and the percentages of CD56dim NK cells among total NK cells showed a trend toward decrease. The CD56dim NK cells in SLE patients showed increased production of IFN-γ and displayed relatively activated phenotypic characteristics, including significant increases in NKp44, NKp46, and CD69 and decreased expression of CD16 and CD158a/h/g. Furthermore, CD56dim NK cells in active SLE patients had higher percentages of NKp44+ cells and lower percentages of CD158a/h/g+ cells than those in inactive SLE patients. The percentages of CD158a/h/g+ cells among CD56dim NK cells were negatively correlated with the systemic lupus erythematosus disease activity index (SLEDAI) and positively correlated with C3 and C4 levels. CONCLUSION: CD56dim NK cells in SLE patients show a reduced proportion tendency among total NK cells and are activated, which partially reflects the disease activity. CD158a/h/g expression on CD56dim NK cells may be considered an index of disease activity. Key Points • In patients with SLE, the proportion of CD56dim NK cells showed a decreased trend and CD56dim NK cells were phenotypically activated which partially reflects the disease activity. • CD158a/h/g expression on CD56dim NK cells were decreased which may be used as an indicator for evaluating disease activity in SLE patients.


Assuntos
Células Matadoras Naturais , Lúpus Eritematoso Sistêmico , Antígeno CD56 , Citocinas , Citometria de Fluxo , Humanos , Interferon gama
12.
Front Plant Sci ; 12: 660409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234795

RESUMO

Salt stress is an important environmental limiting factor. Water dropwort (Oenanthe javanica) is an important vegetable in East Asia; however, its phenotypic and physiological response is poorly explored. For this purpose, 48 cultivars of water dropwort were grown hydroponically and treated with 0, 50, 100, and 200 mm NaCl for 14 days. Than their phenotypic responses were evaluated, afterward, physiological studies were carried out in selected sensitive and tolerant cultivars. In the present study, the potential tolerant (V11E0022) and sensitive (V11E0135) cultivars were selected by screening 48 cultivars based on their phenotype under four different levels of salt concentrations (0, 50, 100, and 200 mm). The results depicted that plant height, number of branches and leaves were less effected in V11E0022, and most severe reduction was observed in V11E0135 in comparison with others. Than the changes in biomass, ion contents, accumulation of reactive oxygen species, and activities of antioxidant enzymes and non-enzymatic antioxidants were determined in the leaves and roots of the selected cultivars. The potential tolerant cultivar (V11E0022) showed less reduction of water content and demonstrated low levels of Na+ uptake, malondialdehyde, and hydrogen peroxide (H2O2) in both leaves and roots. Moreover, the tolerant cultivar (V11E0022) showed high antioxidant activities of ascorbate peroxidase (APX), superoxide dismutase, peroxidase, catalase (CAT), reduced glutathione (GSH), and high accumulation of proline and soluble sugars compared to the sensitive cultivar (V11E0135). These results suggest the potential tolerance of V11E0022 cultivar against salt stress with low detrimental effects and a good antioxidant defense system. The observations also suggest good antioxidant capacity of water dropwort against salt stress. The findings of the present study also suggest that the number of branches and leaves, GSH, proline, soluble sugars, APX, and CAT could serve as the efficient markers for understanding the defense mechanisms of water dropwort under the conditions of salt stress.

13.
PLoS One ; 16(7): e0249825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228738

RESUMO

The water dropworts Oenanthe linearis Wall. ex DC. and O. javanica (Blume) DC. are aquatic perennial herbs that have been used in China as vegetables and traditional medicines. However, their phylogenetic relationships and genetic diversity are poorly understood. Here, we presented the phenotypic traits and genome-wide DNA marker-based analysis of 158 water dropwort accessions representing both species. The analysis revealed that Oenanthe linearis was readily segregated into linear-leaf and deep-cleft leaf water dropworts according to their leaf shapes at flowering. Oenanthe javanica was classified by clustering analysis into two clusters based mainly on the morphological characteristics of their ultimate segments (leaflets). A set of 11 493 high-quality single-nucleotide polymorphisms was identified and used to construct a phylogenetic tree. There was strong discrimination between O. linearis and O. javanica, which was consistent with their phenotype diversification. The population structure and phylogenetic tree analyses suggested that the O. linearis accessions formed two major groups, corresponding to the linear-leaf and deep-cleft leaf types. The most obvious phenotypic differences between them were fully expressed at the reproductive growth stage. A single-nucleotide polymorphism-based analysis revealed that the O. javanica accessions could be categorized into groups I andII. However, this finding did not entirely align with the clusters revealed by morphological classification. Landraces were clustered into one group along with the remaining wild accessions. Hence, water dropwort domestication was short in duration. The level of genetic diversity for O. linearis (π = 0.1902) was slightly lower than that which was estimated for O. javanica (π = 0.2174). There was a low level of genetic differentiation between O. linearis and O. javanica (Fst = 0.0471). The mean genetic diversity among accessions ranged from 0.1818 for the linear-leaf types to 0.2318 for the groupII accessions. The phenotypic traits and the single-nucleotide polymorphism markers identified here lay empirical foundation for future genomic studies on water dropwort.


Assuntos
Oenanthe/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Marcadores Genéticos
14.
Plants (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834849

RESUMO

In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.

15.
Front Plant Sci ; 12: 639639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679854

RESUMO

Blanching is a technique used in blocking sunlight for the production of tender, sweet, and delicious stems in the field. This technique is also used in water dropwort (Oenanthe javanica), an important vegetable in East Asia. In China, the steamed stems of water dropwort are prepared with boiled rice. However, the effect of blanching on the nutritional level and antioxidant capacity of water dropwort has not been explored yet. The current study aims to determine the nutrient contents and antioxidant capacities of five cultivars and select the best cultivar. They were mainly compared in terms of phenotypic, physiological, nutritional, and antioxidant levels after blanch cultivation. Results indicate that blanching significantly influenced the phenotype, physiology, and nutritional level of water dropwort in all cultivars. Although few parameters decreased with blanching, starch, sugars, vitamins, minerals, and antioxidant activities increased significantly in the blanched stems in mid- and post-blanching periods. The most noticeable changes were detected in post-blanching samples. Furthermore, the best cultivar (V11E0012) was identified among them. Therefore, blanched water dropwort could be consumed for achieving more nutraceuticals and antioxidants, and cultivar V11E0012 could be recommend for blanching cultivation.

16.
Cell Mol Immunol ; 18(4): 969-978, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707688

RESUMO

T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.


Assuntos
Autoimunidade , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária/imunologia , Proteínas Nucleares/fisiologia , Infecções por Orthomyxoviridae/prevenção & controle , Células T Auxiliares Foliculares/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia
17.
Trials ; 22(1): 530, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380536

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease that can involve multiple organs or systems. Lupus nephritis (LN) is associated with high mortality and morbidity. However, plenty of patients do not respond to present treatment or relapse. Iguratimod (IGU) is a new small molecular, anti-rheumatic drug and has shown the potential for drug repurposing from rheumatoid arthritis (RA) to LN treatment. It has been approved for treating RA in northeast Asia. Beyond expectation in a recent observational study, over 90% of thirteen refractory LN patients responded to iguratimod monotherapy in 24 weeks, with no steroids dose increasing or any other medication add-on during the entire follow-up. METHODS/DESIGN: This study is a multi-center, randomized, 52-week parallel positive drug-controlled study. The study was designed as a head-to-head comparison between the iguratimod and present first-line therapy on LN patients. A total of 120 patients (60 patients each group) is in the enrolling plan. All enrolled patients are assigned randomly into trial and control groups. The patients will be selected from six study sites in China and will all have biopsy-proven active lupus nephritis. In the first 24 weeks of the trial, IGU is compared with cyclophosphamide as an induction therapy, and in the second 24 weeks, IGU is compared with azathioprine as a maintenance therapy. The primary outcome is renal remission rate including both complete remission and partial remission at week 52, which will be analyzed using a non-inferiority hypothesis test. DISCUSSION: Most patients diagnosed with SLE will develop LN within 5 years and LN remains a major cause of morbidity and death for SLE patients. Although some medications are proven effective for the treatment of this condition, at least 20-35% LN patients have to suffer from relapse or ineffective treatment and medication intolerance is also frequent. This trial is designed to demonstrate whether iguratimod can be used as an alternative induction or maintenance therapy in subjects who have lupus nephritis. Data from this study will provide an evidence on whether or not iguratimod should be recommended to active LN patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT02936375 . Registered on October 18, 2016.


Assuntos
Azatioprina , Nefrite Lúpica , Azatioprina/efeitos adversos , Cromonas , Ciclofosfamida/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Indução de Remissão , Sulfonamidas , Resultado do Tratamento
18.
Antioxidants (Basel) ; 9(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019501

RESUMO

Abiotic stress, such as drought and salinity, severely affect the growth and yield of many plants. Oenanthe javanica (commonly known as water dropwort) is an important vegetable that is grown in the saline-alkali soils of East Asia, where salinity is the limiting environmental factor. To study the defense mechanism of salt stress responses in water dropwort, we studied two water dropwort cultivars, V11E0022 and V11E0135, based on phenotypic and physiological indexes. We found that V11E0022 were tolerant to salt stress, as a result of good antioxidant defense system in the form of osmolyte (proline), antioxidants (polyphenols and flavonoids), and antioxidant enzymes (APX and CAT), which provided novel insights for salt-tolerant mechanisms. Then, a comparative transcriptomic analysis was conducted, and Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) involved in the carbohydrate metabolic process could reduce oxidative stress and enhance energy production that can help in adaptation against salt stress. Similarly, lipid metabolic processes can also enhance tolerance against salt stress by reducing the transpiration rate, H2O2, and oxidative stress. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs involved in hormone signals transduction pathway promoted the activities of antioxidant enzymes and reduced oxidative stress; likewise, arginine and proline metabolism, and flavonoid pathways also stimulated the biosynthesis of proline and flavonoids, respectively, in response to salt stress. Moreover, transcription factors (TFs) were also identified, which play an important role in salt stress tolerance of water dropwort. The finding of this study will be helpful for crop improvement under salt stress.

19.
PeerJ ; 8: e10485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354429

RESUMO

Taro (Colocasia esculenta) is an important root and tuber crop cultivated worldwide. There are two main types of taro that vary in morphology of corm and cormel, 'dasheen' and 'eddoe'. The eddoe type (Colocasia esculenta var. antiquorium) is predominantly distributed throughout China. Characterizing the genetic diversity present in the germplasm bank of taro is fundamental to better manage, conserve and utilize the genetic resources of this species. In this study, the genetic diversity of 234 taro accessions from 16 provinces of China was assessed using 132,869 single nucleotide polymorphism (SNP) markers identified by specific length amplified fragment-sequencing (SLAF-seq). Population structure and principal component analysis permitted the accessions to be categorized into eight groups. The genetic diversity and population differentiation of the eight groups were evaluated using the characterized SNPs. Analysis of molecular variance showed that the variation among eight inferred groups was higher than that within groups, while a relatively small variance was found among the two morphological types and 16 collection regions. Further, a core germplasm set comprising 41 taro accessions that maintained the genetic diversity of the entire collection was developed based on the genotype. This research is expected to be valuable for genetic characterization, germplasm conservation, and breeding of taro.

20.
Sci Rep ; 9(1): 14074, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575997

RESUMO

Twenty-two sacred lotus (Nelumbo nucifera), 46 taros (Colocasia esculenta) and 10 arrowheads (Sagittaria trifolia) were used as materials and combined with EST-SSR (expressed sequence tag-simple sequence repeats) primers developed by our laboratory. Core primers were screened from a large number of primers that were able to distinguish all materials with a high frequency of polymorphisms. Six pairs, twenty pairs and three pairs of core primers were screened from sacred lotus, taro, and arrowhead, respectively. The SSR fingerprints of these three important aquatic vegetables, producing 17-, 87- and 14-bit binary molecular identity cards, respectively, were separately determined by using the core primers. Since there were few core primers of sacred lotus and arrowhead, 3 and 9 primer pairs with higher polymorphic information content (PIC), respectively, were selected as candidate primers. These core and candidate primers were used to identify the purities of No.36 space lotus, Shandong 8502 taro and Wuhan arrowhead, which were 93.3% (84/90), 98.9% (89/90) and 100.0% (90/90), respectively. The fingerprints, displayed as binary molecular identification cards of three important aquatic vegetables, were obtained, and their purity was successfully determined with EST-SSR labeling technology. Phylogenetic trees were also constructed to analyze the genetic diversity of 22 sacred lotus, 46 taros and 10 arrowheads. This study classifies and identifies germplasm resources and is an important reference to test the authenticity and variety purity of other aquatic vegetables in the future.


Assuntos
Colocasia/genética , Impressões Digitais de DNA , Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Nelumbo/genética , Sagittaria/genética , Organismos Aquáticos/genética , Impressões Digitais de DNA/métodos , Marcadores Genéticos/genética , Variação Genética/genética , Filogenia , Polimorfismo Genético/genética , Verduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA