RESUMO
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Assuntos
Transplante de Órgãos , Tolerância ao Transplante , Camundongos , Humanos , Animais , Antígeno B7-H1 , Quimerismo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade , Antígenos HLA , Tolerância Imunológica , Quimeras de Transplante , Transplante de Medula Óssea/métodosRESUMO
Type 1 diabetes (T1D) results from the autoimmune destruction of ß cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of ß cells. It is known that ß cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of ß cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments ß cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing ß cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) ß cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of ß cells and transdifferentiation of α cells can provide sufficient new functional ß cells to reach euglycemia in firmly established T1D.
Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Regeneração/genética , Animais , Autoimunidade/genética , Glicemia/efeitos dos fármacos , Transdiferenciação Celular/genética , Quimerismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Gastrinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/biossíntese , Células Secretoras de Glucagon/metabolismo , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos NOD/genética , Células Precursoras de Linfócitos B/efeitos dos fármacosRESUMO
BACKGROUND: The transcription factor forkhead box P3 (Foxp3) is a master regulatory gene necessary for the development and function of CD4(+)CD25(+) regulatory T cells (Tregs). Mesenchymal stem cells (MSC) have recently emerged as promising candidates for cell-based immunosuppression/tolerance induction protocols. Thus, we hypothesized that MSC-based Foxp3 gene therapy would improve immunosuppressive capacity of MSC and induce donor-specific allograft tolerance in rat's liver allograft model. METHODS: The present study utilized a lentivirus vector to overexpress the therapeutic gene Foxp3 on MSC. In vivo, Injections of 2 × 10(6) MSC, FUGW-MSC or Foxp3-MSC into the portal vein were carried out immediately after liver transplantation. RESULTS: Successful gene transfer of Foxp3 in MSC was achieved by lentivirus carrying Foxp3 and Foxp3-MSC engraftment in liver allograft was confirmed by fluorescence microscopy. Foxp3-MSC treatment significantly inhibited the proliferation of allogeneic ACI CD4(+) T cells to splenocytes (SC) from the same donor strain or third-party BN rat compared with MSC. Foxp3-MSC suppressive effect on the proliferation of CD4(+) T cells is contact dependent and associated with Programmed death ligand 1(PD-L1) upregulation in MSC. Co-culture of CD4(+) T cells with Foxp3-MSC results in a shift towards a Tregs phenotype. More importantly, Foxp3-MSC monotherapy achieved donor-specific liver allograft tolerance and generated a state of CD4(+)CD25(+)Foxp3(+) Tregs-dependent tolerance. CONCLUSION: Foxp3-engineered MSC therapy seems to be a promising and attractive cell therapy approach for inducing immunosuppression or transplant tolerance.
Assuntos
Células da Medula Óssea/citologia , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Animais , Células da Medula Óssea/metabolismo , Comunicação Celular , Sobrevivência de Enxerto/imunologia , Imunomodulação , Terapia de Imunossupressão , Estimativa de Kaplan-Meier , Contagem de Linfócitos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos , Ratos , Doadores de Tecidos , Transdução Genética , Transplante HomólogoRESUMO
The facile construction of a cotton fabric with excellent flame-retardant and water-proof abilities is of great interest for multitask requirements. Herein, a nonfluorine, highly efficient, and cost-effective multifunctional cotton fabric was fabricated via sequentially depositing a novel multielement-containing flame-retardant phosphorylated octa-aminopropyl POSS (PPA-POSS) and a fluorine-free superhydrophobic coating of zeolitic imidazolate framework-67@poly(dimethylsiloxane) (ZIF-67@PDMS). Influences of the PPA-POSS concentration and ZIF-67@PDMS formula on the fire retardancy and water repellency of treated cotton were systematically investigated. The optimized flame-retardant sample CTF3 with 6.2 wt % PPA-POSS exhibited a high limiting oxygen index (LOI) of 34% and self-extinguishing ability. CTF3 was further modified with a properly formulated superhydrophobic ZIF-67@PDMS coating. CTF3-PHB2 displayed enhanced thermal stability, flame retardancy, and outstanding superhydrophobicity. Thermogravimetric analysis (TGA) results demonstrated that CTF3-PHB2 presented a high char residue of 35.9%, which was 220.5% higher than that of the control cotton (11.2%). More importantly, the heat release rate (HRR), total heat release (THR), and average effective heat of combustion (av-EHC) values of CTF3-PHB2 were significantly reduced by 51.4, 56.2, and 68.4%, respectively, compared with those of a pure cotton fabric. Moreover, CTF3-PHB2 showed superhydrophobicity (WCA > 159.3°) and good mechanical abrasion resistance. In addition, CTF3-PHB2 also showed protective abilities such as antifouling, self-cleaning, and water/oil separation performances even for strong acid/alkali mixtures. Thereby, it is believed that the PPA-POSS@ZIF-67@PDMS coating is promising for application in multifunctional textile materials.
RESUMO
BACKGROUND: Cholangiocarcinoma (CCA) represents a devastating malignancy characterized by high mortality, and notoriously problematic to diagnose. Recently, microRNAs (miRs) have been intensively investigated due to their potential usefulness from a tumor treatment perspective. AIMS: The current study was aimed to investigate whether miR-494 influences epithelial-mesenchymal transition (EMT), tumor growth and metastasis of CCA. METHODS: The regulatory miRNAs of WDHD1 in CCA expression chip were predicted, followed by determination of the miR-494 and WDHD1 expression in normal cholangiocyte tissues and CCA tissues. The related protein levels were determined. CCA cell migration, invasion, viability, and cell cycle distribution and the dosage-dependent effect of miR-494 on CCA cell growth were subsequently detected. Finally, tumorigenicity and lymph node metastasis (LNM) were measured. RESULTS: Initially, miR-194 affected the CCA development via negatively regulating WDHD1 and miR-494 which were downregulated while WDHD1 was upregulated in CCA. In addition, miR-494 overexpression elevated E-cadherin expression while decreased expressions of WDHD1, N-cadherin, Vimentin, Snail, Twist and MMP-9. Finally, overexpressed miR-494 was observed to suppress EMT, cell viability, migration, invasion, arrest cell cycle progression, tumor formation, and LNM while accelerating cell apoptosis in vivo. CONCLUSION: This study indicated that miR-494 overexpression suppresses EMT, tumor formation and LNM while promoting CCA cell apoptosis through inhibiting WDHD1 in CCA.