Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130859, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736213

RESUMO

Thallium (Tl) is an extremely toxic metal, whose geochemical behavior remains poorly understood. This study aims to clarify the migration pathway and source apportionment of Tl in sediments from a watershed downstream of an open and large-scale pyrite mine area in south China, using high-precised Tl isotopic compositions. Results showed that Tl isotopic fractionations were mainly influenced by the anthropogenic Tl sources in all the sediments as a whole from the studied watershed, while in situ mineral adsorption and biological activity were limited. Moreover, plot of ε205Tl vs. 1/Tl further illustrated that three possible end-members, viz. background sediments, pyrite tailings, and sewage treatment wastes were ascribed to predominant sources of Tl enrichment in the sediments. A ternary mixing model unveiled that waste from pyrite mining activities (i.e., both pyrite tailings and sewage treatment wastes) affected the downstream sediments up to 10 km. All these findings suggest that Tl isotopic signature is a reliable tool to trace Tl sources in the sediments impacted by mining activities. It is highly critical for further target-oriented and precise remediation of Tl contamination.

2.
Sci Total Environ ; 856(Pt 1): 158883, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36419275

RESUMO

Pyrite is a typical sulfide mineral which contains various potentially toxic metal(loid)s (PTMs). The pyrite smelting and subsequent industrial utilization activities usually release numerous amounts of PTMs into nearby ecosystem, which may be enriched in the nearby farmland soils and crops, leading to hidden but irreversible harm to human health via the food chain. Herein, the distribution pattern, source apportionment, and potential health risks of Pb, Zn, Cu, Cd and multiple seldom monitored PTMs (Ag, Bi, Sb, Sr, Th, U, W, and V) in the paddy soils and different organs of the rice plants from ten various sites in a typical industrial zone were investigated, where pyrite ores were used for the production of sulfuric acid and subsequent cement over several decades. The results showed that the contents of Cd, Pb and Zn in studied paddy soils generally exceeded the maximum permissible level (MPL) in China, and the contents of Sb and V were approaching the MPL. Moreover, the rice is easier to bioaccumulate Cd, Cu, and Zn than the other studied elements. The hazard quotient (HQ) calculations indicate that the rice containing such multiple elements may cause a high potential non-carcinogenic and carcinogenic health risk for residents, particularly for the senior group. The Pb isotope tracing method combined with PCA (principal component analysis) further uncovered that the pyrite industrial utilization contributed 18.58-55.41 % to the highly enriched PTMs in paddy soils. All these findings indicate that the paddy soil system has been contaminated by the pyrite industrial activities and certain distances or areas should be rigidly forbidden from rice cultivation in the proximity of the pyrite smelting and related industrial sites.


Assuntos
Oryza , Humanos , Solo , Chumbo , Ecossistema , Cádmio , Isótopos , Intoxicação por Metais Pesados , China , Cadeia Alimentar
3.
Sci Total Environ ; 828: 154346, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259386

RESUMO

In this study, the distributions of thallium (Tl), and other potential toxic elements, such as Cd, Co, Cu, Pb, Sr, As, Cr, Ni, Zn, and Mn in needles, tree rings and soils of pine trees in one of the largest pyrite mining areas in the world, i.e., Yunfu, China were investigated. The results showed that pseudo-total Tl concentration of the tree rings ranged from 0.41 to 2.03 mg/kg (average: 1.12 mg/kg) during the year of 1998 to 2011. This indicates an overall obvious enrichment of Tl. Further investigation of element level variations in the pine needles showed a negative correlation between Tl content and the distance from the mining area. The results of Principal Component Analysis additionally demonstrated that Tl in the tree rings was most likely derived from the pine needles. Notably, Tl contents in the tree rings exhibited generally similar distribution pattern to the annual production intensity of Yunfu pyrite mining activities. The findings suggest that metal(loid)s in particular of Tl in pine tree rings can be used as alternative proxies to approximatively reconstruct the chronological change of atmospheric environmental pollution induced by pyrite associated mining/smelting activities.


Assuntos
Metais Pesados , Pinus , Poluentes do Solo , China , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Ferro , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Sulfetos , Tálio/análise
4.
Sci Total Environ ; 821: 153399, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35092772

RESUMO

Thallium is a trace metal with severe toxicity. Contamination of thallium (Tl) generated by steel and non-ferrous metals industry is gaining growing concern worldwide. However, little is known on Tl contamination owing to industrial activities using carbonate minerals. This study revealed abundant geochemical mobile/bioavailable Tl (> 65.7%, in average; mostly in oxidizable fraction) in soils from a carbonate-hosted PbZn ore utilizing area in China for the first time. Unexpected Tl enrichment was observed in soil accompanying with 3655, 7820, 100.1, 27.3 and 29.9 mg/kg (in average) of Pb, Zn, As, Cd and Sb, respectively. Characterization using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis further confirmed that historical industrial activities impose anthropogenic catastrophic effects on the local agricultural soil system. The ecological and health risk assessment of heavy metal(loid)s in soils proclaimed serious potential non-carcinogenic risks of Pb and V to adults, and Pb, Tl and As to children. Sequential extraction analysis showed that Tl, as well as Pb, Zn, Mn, Co, and Cd, mainly existed in the mobile fractions (exchangeable/acid-extractable, reducible and oxidizable), indicating an ecological risk of biological accumulation of multiple metal(loid)s in this area. These findings provide a theoretical basis for taking appropriate remediation measures in order to ensure safety of soils in such industrial areas likewise.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Carbonatos/análise , Criança , China , Monitoramento Ambiental , Humanos , Chumbo/análise , Metais Pesados/análise , Minerais/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Tálio/análise , Zinco/análise , Compostos de Zinco
5.
J Hazard Mater ; 423(Pt A): 127080, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523503

RESUMO

Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.


Assuntos
Poluentes do Solo , Tálio , Filogenia , RNA Ribossômico 16S/genética , Solo , Poluentes do Solo/análise , Tálio/análise
6.
Sci Total Environ ; 803: 150036, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525718

RESUMO

Thallium (Tl) is a highly toxic trace metal. Lead (Pb)­zinc (Zn) smelting, which is a pillar industry in various countries, is regarded as one of the dominant anthropogenic sources of Tl contamination in the environment. In this study, thallium isotope data have been evaluated for raw material and a set of industrial wastes produced at different stages of Pb-Zn smelting in a representative large facility located by the North River, South China, in order to capture Tl isotope signatures of such typical anthropogenic origin for laying the foundation of tracking Tl pollution. Large variations in Tl isotopic compositions of raw Pb-Zn ores and solid smelting wastes produced along the process chain were observed. The ε205Tl values of raw Pb-Zn ores and return fines are -0.87 ± 0.26 and -1.0 ± 0.17, respectively, contrasted by increasingly more negative values for electrostatic precipitator dust (ε205Tl = -2.03 ± 0.14), lime neutralizing slag (ε205Tl = -2.36 ± 0.18), and acid sludge (ε205Tl = -4.62 ± 0.76). The heaviest ε205Tl (1.12 ± 0.51) was found in clinker. These results show that isotopic fractionation occurs during the smelting processes. Obviously, the lighter Tl isotope is enriched in the vapor phase (-3.75 ε205Tl units). Further XPS and STEM-EDS analyses show that Tl isotope fractionation conforms to the Rayleigh fractionation model, and adsorption of 205Tl onto hematite (Fe2O3) may play an important role in the enrichment of the heavier Tl isotope. The findings demonstrate that Tl isotope analysis is a robust tool to aid our understanding of Tl behavior in smelting processes and to provide a basis for source apportionment of Tl contaminations.


Assuntos
Tálio , Zinco , Monitoramento Ambiental , Resíduos Industriais , Isótopos/análise , Chumbo , Tálio/análise
7.
Sci Total Environ ; 810: 151166, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699818

RESUMO

Uranium (U)-containing wastewater poses serious pressure to human health and environmental safety. The treatment of U-bearing wastewater using green and facilely fabricated materials is considered a promising alternative. Herein, the raw and modified aerial roots of Ficus microcarpa (RARF and MARF, respectively) were prepared and applied to the treatment of synthesized U-containing wastewater. The results showed that the adsorption process was spontaneous and chemically controlled, which was in good accordance with the pseudo-second-order kinetic and the Redlich-Peterson isotherm adsorption model. The adsorption mechanisms were proposed to be the complexation between U(VI) and oxygen/phosphorus-containing functional groups on MARF.


Assuntos
Ficus , Urânio , Adsorção , Humanos , Cinética , Fósforo , Urânio/análise , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA