Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.610
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070510

RESUMO

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Assuntos
Eletroencefalografia , Parvalbuminas , Sono , Animais , Camundongos , Neurônios Colinérgicos/fisiologia , Lobo Frontal/metabolismo , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
2.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295403

RESUMO

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Assuntos
Brassica napus , Plasmodioforídeos , Microscopia Crioeletrônica , Chumbo , Brassica napus/genética , Plasmodioforídeos/fisiologia , Canais Iônicos , Doenças das Plantas
3.
Cell ; 164(5): 1015-30, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26898331

RESUMO

TGF-ß signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-ß mediator Smad4. We show that TGF-ß induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-ß-sensitive PDA cells, EMT becomes lethal by converting TGF-ß-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-ß. TGF-ß-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-ß tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.


Assuntos
Carcinoma Ductal/genética , Transição Epitelial-Mesenquimal , Redes Reguladoras de Genes , Neoplasias Pancreáticas/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose , Carcinoma Ductal/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Organoides/metabolismo , Organoides/patologia , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOXC/metabolismo , Proteína Smad4/metabolismo
4.
Physiol Rev ; 102(3): 1263-1325, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072525

RESUMO

Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.


Assuntos
Fenômenos Biológicos , Optogenética , Humanos , Canais Iônicos , Transdução de Sinais
5.
Nature ; 578(7793): E11, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937917

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 577(7791): 566-571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915377

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1-4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor ß (TGF-ß) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-ß signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-ß depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12-19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-ß-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-ß-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-ß-SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal-SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-ß pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fibrose/patologia , Gastrulação , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Organoides/metabolismo , Organoides/patologia , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia
7.
Trends Genet ; 38(12): 1253-1270, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35738948

RESUMO

Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.


Assuntos
Engenharia Genética , Optogenética , Animais , Genoma , DNA , Sistemas CRISPR-Cas , Mamíferos/genética
8.
Mol Cell Proteomics ; 22(6): 100549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076046

RESUMO

Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. To gain new insights into the proteins and processes, vacuolar Pi level regulated by vacuolar phosphate transporter 1 (VPT1) in Arabidopsis, we carried out tandem mass tag labeling proteome and phosphoproteome profiling of Arabidopsis WT and vpt1 loss-of-function mutant plants. The vpt1 mutant had a marked reduced vacuolar Pi level and a slight increased cytosol Pi level. The mutant was stunted as reflected in the reduction of the fresh weight compared with WT plants and bolting earlier under normal growth conditions in soil. Over 5566 proteins and 7965 phosphopeptides were quantified. About 146 and 83 proteins were significantly changed at protein abundance or site-specific phosphorylation levels, but only six proteins were shared between them. Functional enrichment analysis revealed that the changes of Pi states in vpt1 are associated with photosynthesis, translation, RNA splicing, and defense response, consistent with similar studies in Arabidopsis. Except for PAP26, EIN2, and KIN10, which were reported to be associated with phosphate starvation signal, we also found that many differential proteins involved in abscisic acid signaling, such as CARK1, SnRK1, and AREB3, were significantly changed in vpt1. Our study illuminates several new aspects of the phosphate response and identifies important targets for further investigation and potential crop improvement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Proteoma/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
9.
J Biol Chem ; 299(2): 102885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626981

RESUMO

ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Domínios Proteicos/genética , Ligação Proteica/genética
10.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363403

RESUMO

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Assuntos
Ácido Abscísico , Scutellaria baicalensis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Filogenia , Melhoramento Vegetal , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
J Hepatol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552880

RESUMO

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.

12.
Anal Chem ; 96(14): 5711-5718, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551104

RESUMO

Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.

13.
Anal Chem ; 96(11): 4682-4692, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450485

RESUMO

Accurate and rapid differentiation and authentication of agricultural products based on their origin and quality are crucial to ensuring food safety and quality control. However, similar chemical compositions and complex matrices often hinder precise identification, particularly for adulterated samples. Herein, we propose a novel method combining multiplex surface-enhanced Raman scattering (SERS) fingerprinting with a one-dimensional convolutional neural network (1D-CNN), which enables the effective differentiation of the category, origin, and grade of agricultural products. This strategy leverages three different SERS-active nanoparticles as multiplex sensors, each tailored to selectively amplify the signals of preferentially adsorbed chemicals within the sample. By strategically combining SERS spectra from different NPs, a 'SERS super-fingerprint' is constructed, offering a more comprehensive representation of the characteristic information on agricultural products. Subsequently, utilizing a custom-designed 1D-CNN model for feature extraction from the 'super-fingerprint' significantly enhances the predictive accuracy for agricultural products. This strategy successfully identified various agricultural products and simulated adulterated samples with exceptional accuracy, reaching 97.7% and 94.8%, respectively. Notably, the entire identification process, encompassing sample preparation, SERS measurement, and deep learning analysis, takes only 35 min. This development of deep learning-assisted multiplex SERS fingerprinting establishes a rapid and reliable method for the identification and authentication of agricultural products.


Assuntos
Aprendizado Profundo , Nanopartículas , Análise Espectral Raman/métodos , Inocuidade dos Alimentos
14.
Small ; : e2311993, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363065

RESUMO

Excessive ultraviolet (UV) radiation has serious damage to human's health, therefore the development of visible, portable, and wearable sensor for monitoring UV radiation, especially the cumulative UV dosage, is highly desired but full of challenges. Herein, a wearable and flexible UV dosimeter based on photochromic perovskite nanocrystals (PNCs) is designed. The obtained CsPbCl3 PNCs dispersed in dibromomethane (PNCs-DBM) undergo continuous, vivid, and multiple (from very weak purple to blue, cyan, and finally strong green) color change in response to UV radiation. It is demonstrated that the UV-induced degradation of DBM and subsequent anion-exchange reaction between CsPbCl3 and Br- , play a crucial role in the color change of PNCs-DBM. The properties of continuous fluorescence color change and enhanced fluorescence intensity enable the construction of sensitive and visible UV dosimeter. Furthermore, by integrated photochromic PNCs with flexible bracelet or PDMS substrate, a wearable UV sensor or a multi-indicator array for the detection of solar UV dosage is developed. This work may advance the fundamental understanding about photochromic perovskite, and show promising application of perovskite nanomaterials in easily fabricated, low-cost, visualized, and wearable solar UV dosimeter.

15.
Small ; 20(22): e2308630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100208

RESUMO

Sodium-ion hybrid capacitors (SIHCs) have attracted much attention due to integrating the high energy density of battery and high out power of supercapacitors. However, rapid Na+ diffusion kinetics in cathode is counterbalanced with sluggish anode, hindering the further advancement and commercialization of SIHCs. Here, aiming at conversion-type metal sulfide anode, taking typical VS2 as an example, a comprehensive regulation of nanostructure and electronic properties through NH4 + pre-intercalation and Mo-doping VS2 (Mo-NVS2) is reported. It is demonstrated that NH4 + pre-intercalation can enlarge the interplanar spacing and Mo-doping can induce interlayer defects and sulfur vacancies that are favorable to construct new ion transport channels, thus resulting in significantly enhanced Na+ diffusion kinetics and pseudocapacitance. Density functional theory calculations further reveal that the introduction of NH4 + and Mo-doping enhances the electronic conductivity, lowers the diffusion energy barrier of Na+, and produces stronger d-p hybridization to promote conversion kinetics of Na+ intercalation intermediates. Consequently, Mo-NVS2 delivers a record-high reversible capacity of 453 mAh g-1 at 3 A g-1 and an ultra-stable cycle life of over 20 000 cycles. The assembled SIHCs achieve impressive energy density/power density of 98 Wh kg-1/11.84 kW kg-1, ultralong cycling life of over 15000 cycles, and very low self-discharge rate (0.84 mV h-1).

16.
Rheumatology (Oxford) ; 63(4): 1093-1103, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432340

RESUMO

OBJECTIVE: To investigate opioid prescribing trends and assess the impact of the COVID-19 pandemic on opioid prescribing in rheumatic and musculoskeletal diseases (RMDs). METHODS: Adult patients with RA, PsA, axial spondyloarthritis (AxSpA), SLE, OA and FM with opioid prescriptions between 1 January 2006 and 31 August 2021 without cancer in UK primary care were included. Age- and gender-standardized yearly rates of new and prevalent opioid users were calculated between 2006 and 2021. For prevalent users, monthly measures of mean morphine milligram equivalents (MME)/day were calculated between 2006 and 2021. To assess the impact of the pandemic, we fitted regression models to the monthly number of prevalent opioid users between January 2015 and August 2021. The time coefficient reflects the trend pre-pandemic and the interaction term coefficient represents the change in the trend during the pandemic. RESULTS: The study included 1 313 519 RMD patients. New opioid users for RA, PsA and FM increased from 2.6, 1.0 and 3.4/10 000 persons in 2006 to 4.5, 1.8 and 8.7, respectively, in 2018 or 2019. This was followed by a fall to 2.4, 1.2 and 5.9, respectively, in 2021. Prevalent opioid users for all RMDs increased from 2006 but plateaued or dropped beyond 2018, with a 4.5-fold increase in FM between 2006 and 2021. In this period, MME/day increased for all RMDs, with the highest for FM (≥35). During COVID-19 lockdowns, RA, PsA and FM showed significant changes in the trend of prevalent opioid users. The trend for FM increased pre-pandemic and started decreasing during the pandemic. CONCLUSION: The plateauing or decreasing trend of opioid users for RMDs after 2018 may reflect the efforts to tackle rising opioid prescribing in the UK. The pandemic led to fewer people on opioids for most RMDs, providing reassurance that there was no sudden increase in opioid prescribing during the pandemic.


Assuntos
Artrite Psoriásica , COVID-19 , Endrin/análogos & derivados , Doenças Musculares , Doenças Musculoesqueléticas , Doenças Reumáticas , Adulto , Humanos , Analgésicos Opioides/uso terapêutico , Pandemias , COVID-19/epidemiologia , Padrões de Prática Médica , Controle de Doenças Transmissíveis , Doenças Musculoesqueléticas/epidemiologia , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/epidemiologia
17.
Opt Express ; 32(3): 2906-2915, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297527

RESUMO

We present a novel micro-fabrication technique for creating concave surfaces on the endfacets of photonic crystal fibers. A fiber fusion splicer is used to generate arc discharges to melt and reshape the fiber endfacet. This technique can produce large spherical concave surfaces with roughness as low as 0.12 nm in various types of photonic crystal fibers. The deviation of fabricated surface and a spherical profile in the region of 70 µm in diameter is less than 50 nm. The center of the concave surface and the fiber mode field are highly coincident with a deviation less than 500 nm. Finesse measurements have shown that a Fabry-Pérot cavity composed of the fiber fabricated using this method and a plane mirror maintains finesse of 20000. This method is easy to replicate, making it a practical and efficient approach to fabricate concave surface on fibers for open-access fiber Fabry-Pérot cavities.

18.
J Exp Bot ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808519

RESUMO

Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA). However, the signaling of ABA in the regulation of fruit coloration is not fully understood. Here, a transcription factor FabHLH3 key to fruit coloration is identified by yeast two hybrid library screening using FaSnRK2.6 as a bait, an ABA core signaling component negative to ripening. Indeed, this interaction is also confirmed by firefly luciferase complementation assay and pull-down assay. RT-qPCR and Western blotting analysis confirm FabHLH3 is expressed ubiquitously in strawberry and stably during fruit development. Manipulating both FabHLH3 and FaSnRK2.6 expression by overexpression and interference demonstrates that FabHLH3 and FaSnRK2.6 promote and inhibit strawberry fruit coloration, respectively, using the marker gene FaUFGT, key to anthocyanin biosynthesis. FaSnRK2.6 can phosphorylate FabHLH3, which promotes FaUFGT expression by the directly binding to its promoter. The phosphorylation inhibits the binding of FabHLH3 to FaUFGT promoter, consequently suppressing FaUFGT expression. Altogether, FaSnRK2.6, a negative kinase in ripening, interacts with and phosphorylates FabHLH3 to suppress FaUFGT expression. With the increase of ABA content in strawberry fruit ripening, the expression of FaSnRK2.6 decreased, which released FabHLH3 transcription activity and enhanced FaUFGT expression, finally promoting the coloration. Thus, our findings fill a gap how FaSnRK2.6 negatively regulates strawberry fruit coloration and ripening by FabHLH3.

19.
Phys Rev Lett ; 132(16): 160201, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701466

RESUMO

Quantum theory allows information to flow through a single device in a coherent superposition of two opposite directions, resulting into situations where the input-output direction is indefinite. Here we introduce a theoretical method to witness input-output indefiniteness in a single quantum device, and we experimentally demonstrate it by constructing a photonic setup that exhibits input-output indefiniteness with a statistical significance exceeding 69 standard deviations. Our results provide a way to characterize input-output indefiniteness as a resource for quantum information and photonic quantum technologies and enable tabletop simulations of hypothetical scenarios exhibiting quantum indefiniteness in the direction of time.

20.
Cell Biol Int ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654431

RESUMO

Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA