Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386058

RESUMO

Although clinical reports have highlighted association of the deacetylase sirtuin 1 (SIRT1) gene with anxiety, its exact role in the pathogenesis of anxiety disorders remains unclear. The present study was designed to explore whether and how SIRT1 in the mouse bed nucleus of the stria terminalis (BNST), a key limbic hub region, regulates anxiety. In a chronic stress model to induce anxiety in male mice, we used site- and cell-type-specific in vivo and in vitro manipulations, protein analysis, electrophysiological and behavioral analysis, in vivo MiniScope calcium imaging and mass spectroscopy, to characterize possible mechanism underlying a novel anxiolytic role for SIRT1 in the BNST. Specifically, decreased SIRT1 in parallel with increased corticotropin-releasing factor (CRF) expression was found in the BNST of anxiety model mice, whereas pharmacological activation or local overexpression of SIRT1 in the BNST reversed chronic stress-induced anxiety-like behaviors, downregulated CRF upregulation, and normalized CRF neuronal hyperactivity. Mechanistically, SIRT1 enhanced glucocorticoid receptor (GR)-mediated CRF transcriptional repression through directly interacting with and deacetylating the GR co-chaperone FKBP5 to induce its dissociation from the GR, ultimately downregulating CRF. Together, this study unravels an important cellular and molecular mechanism highlighting an anxiolytic role for SIRT1 in the mouse BNST, which may open up new therapeutic avenues for treating stress-related anxiety disorders.

2.
Nat Metab ; 4(12): 1746-1755, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443522

RESUMO

In humans, persistent pain often leads to decreased appetite. However, the neural circuits underlying this behaviour remain unclear. Here, we show that a circuit arising from glutamatergic neurons in the anterior cingulate cortex (GluACC) projects to glutamatergic neurons in the lateral hypothalamic area (GluLHA) to blunt food intake in a mouse model of persistent pain. In turn, these GluLHA neurons project to pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus (POMCArc), a well-known neuronal population involved in decreasing food intake. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that the GluACC → GluLHA → Arc circuit is activated in mouse models of persistent pain and is accompanied by decreased feeding behaviour in both males and females. Inhibition of this circuit using chemogenetics can alleviate the feeding suppression symptoms. Our study indicates that the GluACC → GluLHA → Arc circuit is involved in driving the suppression of feeding under persistent pain through POMC neuronal activity. This previously unrecognized pathway could be explored as a potential target for pain-associated diseases.


Assuntos
Comportamento Alimentar , Pró-Opiomelanocortina , Camundongos , Masculino , Humanos , Animais , Feminino , Pró-Opiomelanocortina/metabolismo , Comportamento Alimentar/fisiologia , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios/metabolismo , Dor/metabolismo
3.
J Comp Neurol ; 528(6): 935-952, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31674014

RESUMO

The tree shrew (Tupaia belangeri chinensis) is the closest living relative of primates. Yet, little is known about the anatomical distribution of tyrosine hydroxylase (TH)-immunoreactive (ir) structures in the hypothalamus of the tree shrew. Here, we provide the first detailed description of the distribution of TH-ir neurons in the hypothalamus of tree shrews via immunohistochemical techniques. TH-ir neurons were widely distributed throughout the hypothalamus of tree shrew. The majority of hypothalamic TH-ir neurons were found in the paraventricular hypothalamic nucleus (PVN) and supraoptic nucleus (SON), as was also observed in the human hypothalamus. In contrast, rare TH-ir neurons were localized in the PVN and SON of rats. Vasopressin (AVP) colocalized with TH-ir neurons in the PVN and SON in a large number of neurons, but oxytocin and corticotropin-releasing hormone did not colocalize with TH. In addition, colocalization of TH with AVP was also observed in the other hypothalamic regions. Moreover, TH-ir neurons in the PVN and SON of tree shrews expressed other dopaminergic markers (aromatic l-amino acid decarboxylase and vesicular monoamine transporter, Type 2), further supporting that TH-ir neurons in the PVN and SON were catecholaminergic. These findings provide a detailed description of TH-ir neurons in the hypothalamus of tree shrews and demonstrate species differences in the distribution of this enzyme, providing a neurobiological basis for the participation of TH-ir neurons in the regulation of various hypothalamic functions.


Assuntos
Hipotálamo/citologia , Neurônios/citologia , Tupaiidae/anatomia & histologia , Animais , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Especificidade da Espécie , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Neuron ; 106(2): 301-315.e7, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32101698

RESUMO

In response to stressors, individuals adopt different behavioral styles, which are essential for survival and form the basis of differential susceptibility to stress-related disorders. Corticotropin-releasing factor (CRF) and the medial prefrontal cortex (mPFC) have predominantly been studied in behavioral response to stress, while the role of mPFC CRF neurons is poorly understood. Using morphology, electrophysiology, and calcium imaging approaches, we characterized mPFC CRF neurons as a unique subtype of GABAergic inhibitory interneurons that were directly engaged in the tail suspension challenge. Genetic ablation or chemogenetic inhibition of dorsal mPFC (dmPFC) CRF neurons increased immobility under the tail-suspension and forced-swimming challenges and induced social avoidance behavior, whereas activation had the opposite effect on the same measures. Furthermore, increasing CRF neuronal activity promoted durable resilience to repeated social defeat stress. These results uncover a critical role of mPFC CRF interneurons in bidirectionally controlling motivated behavioral style selection under stress.


Assuntos
Comportamento Animal/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Aprendizagem da Esquiva , Sinalização do Cálcio , Hormônio Liberador da Corticotropina/genética , Fenômenos Eletrofisiológicos , Elevação dos Membros Posteriores , Interneurônios/fisiologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Knockout , Córtex Pré-Frontal/citologia , Resiliência Psicológica , Estresse Psicológico/psicologia , Natação/psicologia , Ácido gama-Aminobutírico/fisiologia
5.
Neurosci Bull ; 34(3): 405-418, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29508249

RESUMO

The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.


Assuntos
Corpo Estriado/anatomia & histologia , Globo Pálido/anatomia & histologia , Tupaiidae/anatomia & histologia , Acetilcolinesterase/metabolismo , Animais , Mapeamento Encefálico , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Globo Pálido/citologia , Globo Pálido/metabolismo , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
6.
J Comp Neurol ; 526(17): 2744-2775, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155886

RESUMO

The cerebellum is involved in the control of movement, emotional responses, and reward processing. The tree shrew is the closest living relative of primates. However, little is known not only about the systematic nomenclature for the tree shrew cerebellum but also about the detailed neurochemical characterization and afferent projections. In this study, Nissl staining and acetylcholinesterase histochemistry were used to reveal anatomical features of the cerebellum of tree shrews (Tupaia belangeri chinensis). The cerebellar cortex presented a laminar structure. The morphological characteristics of the cerebellum were comprehensively described in the coronal, sagittal, and horizontal sections. Moreover, distributive maps of calbindin-immunoreactive (-ir) cells in the Purkinje cell layer of the cerebellum of tree shrews were depicted using coronal, sagittal, and horizontal schematics. In addition, 5th cerebellar lobule (5Cb)-projecting neurons were present in the pontine nuclei, reticular nucleus, spinal vestibular nucleus, ventral spinocerebellar tract, and inferior olive of the tree shrew brain. The anterior part of the paramedian lobule of the cerebellum (PMa) received mainly strong innervation from the lateral reticular nucleus, inferior olive, pontine reticular nucleus, spinal trigeminal nucleus, pontine nuclei, and reticulotegmental nucleus of the pons. The present results provide the first systematic nomenclature, detailed atlas of the whole cerebellum, and whole-brain mapping of afferent projections to the 5Cb and PMa in tree shrews. Our findings provide morphological support for tree shrews as an alternative model for studies of human cerebellar pathologies.


Assuntos
Cerebelo/anatomia & histologia , Neuroquímica , Neurônios Aferentes/fisiologia , Tupaiidae/fisiologia , Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Animais , Mapeamento Encefálico , Calbindinas/metabolismo , Córtex Cerebelar/anatomia & histologia , Córtex Cerebelar/química , Córtex Cerebelar/citologia , Cerebelo/química , Cerebelo/citologia , Imuno-Histoquímica , Masculino , Ponte/anatomia & histologia , Ponte/química , Ponte/citologia , Células de Purkinje/fisiologia , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA