Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Chem Ecol ; 45(2): 146-161, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29961916

RESUMO

Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.


Assuntos
Gastrópodes/fisiologia , Insetos/fisiologia , Solanum/química , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Gastrópodes/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Insetos/efeitos dos fármacos , Metaboloma , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Solanum/metabolismo , Espectrometria de Massas em Tandem
2.
Oecologia ; 187(2): 495-506, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29383505

RESUMO

In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.


Assuntos
Gastrópodes , Solanum , Animais , Glicosídeos , Herbivoria , Países Baixos
3.
Ann Bot ; 120(1): 171-180, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586427

RESUMO

Background and Aims: Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. Methods: The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. Key Results: As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. Conclusions: The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events.


Assuntos
Inundações , Raízes de Plantas/fisiologia , Solanum/fisiologia , Água/fisiologia , Ecossistema , Fotossíntese , Transpiração Vegetal
4.
Ann Bot ; 116(2): 279-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26105188

RESUMO

BACKGROUND AND AIMS: Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. METHODS: Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. KEY RESULTS: Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. CONCLUSIONS: The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants.


Assuntos
Inundações , Raízes de Plantas/crescimento & desenvolvimento , Solanum/crescimento & desenvolvimento , Água , Análise de Variância , Biomassa , Ecossistema , Luz , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos da radiação , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Solanum/anatomia & histologia , Solanum/fisiologia , Solanum/efeitos da radiação
5.
New Phytol ; 201(1): 193-204, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24033342

RESUMO

Shading and mechanical stress (MS) modulate plant architecture by inducing different developmental pathways. Shading results in increased stem elongation, often reducing whole-plant mechanical stability, while MS inhibits elongation, with a concomitant increase in stability. Here, we examined how these organ-level responses are related to patterns and processes at the cellular level by exposing Impatiens capensis to shading and MS. Shading led to the production of narrower cells along the vertical axis. By contrast, MS led to the production of fewer, smaller and broader cells. These responses to treatments were largely in line with genetic differences found among plants from open and closed canopy sites. Shading- and MS-induced plastic responses in cellular characteristics were negatively correlated: genotypes that were more responsive to shading were less responsive to MS and vice versa. This negative correlation, however, did not scale to mechanical and architectural traits. Our data show how environmental conditions elicit distinctly different associations between characteristics at the cellular level, plant morphology and biomechanics. The evolution of optimal response to different environmental cues may be limited by negative correlations of stress-induced responses at the cellular level.


Assuntos
Adaptação Fisiológica/genética , Escuridão , Impatiens/fisiologia , Células Vegetais/fisiologia , Caules de Planta , Estresse Mecânico , Estresse Fisiológico/genética , Meio Ambiente , Genótipo , Impatiens/anatomia & histologia , Impatiens/genética , Impatiens/crescimento & desenvolvimento , Fenótipo , Folhas de Planta , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento
6.
New Phytol ; 199(4): 991-1000, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23672194

RESUMO

Shoot elongation is one of the main plastic responses of plants to burial, a ubiquitous stress factor in dry ecosystems. Yet, intraspecific variation in this response to burial and the extent to which this variation is functionally coordinated with variation in other trait responses are largely unknown. We subjected seedlings of the shrub Caragana intermedia from 18 maternal parents (i.e. different half-sib families) to repeated partial burial to investigate how burial affects shoot growth, stem mechanical traits and associated plasticity. Burial increased both stem elongation and diameter growth of plants, but decreased biomass production. Half-sib families had different rates of shoot elongation, and differed in their response to burial with respect to biomechanical stem properties. Across half-sib families, the magnitude of these responses in mechanical traits was positively correlated with the magnitude of the stem elongation response. These results indicate that plasticity in different stem traits in response to sand burial and intraspecific variation therein are functionally coordinated with respect to mechanical stability. The results emphasize the importance of considering functionally coordinated traits when analyzing phenotypic plasticity in plants.


Assuntos
Caragana/anatomia & histologia , Clima Desértico , Dióxido de Silício , Análise de Variância , Biomassa , Caragana/crescimento & desenvolvimento , Caragana/fisiologia , Módulo de Elasticidade , Fenótipo , Especificidade da Espécie
7.
New Phytol ; 194(2): 572-582, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22335539

RESUMO

Plants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment.


Assuntos
Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Rumex/crescimento & desenvolvimento , Rumex/efeitos da radiação , Biomassa , Metabolismo dos Carboidratos/efeitos da radiação , Alimentos , Folhas de Planta/anatomia & histologia , Solubilidade/efeitos da radiação
8.
New Phytol ; 190(2): 409-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21261627

RESUMO

• Plants can respond to their environment by morphological plasticity. Generally, the potential benefits of adaptive plastic responses are beyond doubt under predictable environmental changes. However, the net benefits may be less straightforward when plants encounter temporal stresses, such as flooding in river flood plains. • Here, we tested whether the balance of costs and benefits associated with flooding-induced shoot elongation depends on the flooding regime, by subjecting Rumex palustris plants with different elongation capacity to submergence of different frequency and duration. • Our results showed that reaching the surface by shoot elongation is associated with fitness benefits, as under less frequent, but longer, flooding episodes plants emerging above the floodwater had greater biomass production than plants that were kept below the surface. As we predicted, slow-elongating plants had clear advantages over fast-elongating ones if submergence was frequent but of short duration, indicating that elongation also incurs costs. • Our data suggest that high costs select for weak plasticity under frequent environmental change. In contrast to our predictions, however, fast-elongating plants did not have an overall advantage over slow-elongating plants when floods lasted longer. This indicates that the delicate balance between benefits and costs of flooding-induced elongation depends on the specific characteristics of the flooding regime.


Assuntos
Inundações , Variação Genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Rumex/crescimento & desenvolvimento , Análise de Variância , Flores/fisiologia , Modelos Biológicos , Rumex/anatomia & histologia , Rumex/genética
9.
Plant Physiol ; 154(2): 969-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20699400

RESUMO

Elongation of leaves and stem is a key trait for survival of terrestrial plants during shallow but prolonged floods that completely submerge the shoot. However, natural floods at different locations vary strongly in duration and depth, and, therefore, populations from these locations are subjected to different selection pressure, leading to intraspecific variation. Here, we identified the signal transduction component that causes response variation in shoot elongation among two accessions of the wetland plant Rumex palustris. These accessions differed 2-fold in petiole elongation rates upon submergence, with fast elongation found in a population from a river floodplain and slow elongation in plants from a lake bank. Fast petiole elongation under water consumes carbohydrates and depends on the (inter)action of the plant hormones ethylene, abscisic acid, and gibberellic acid. We found that carbohydrate levels and dynamics in shoots did not differ between the fast and slow elongating plants, but that the level of ethylene-regulated abscisic acid in petioles, and hence gibberellic acid responsiveness of these petioles explained the difference in shoot elongation upon submergence. Since this is the exact signal transduction level that also explains the variation in flooding-induced shoot elongation among plant species (namely, R. palustris and Rumex acetosa), we suggest that natural selection results in similar modification of regulatory pathways within and between species.


Assuntos
Ácido Abscísico/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Rumex/fisiologia , Transdução de Sinais , Água/fisiologia , Carboidratos/análise , Etilenos/metabolismo , Inundações , Giberelinas/fisiologia , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/fisiologia , RNA de Plantas/genética , Rumex/genética , Rumex/crescimento & desenvolvimento
10.
Am J Bot ; 98(10): 1602-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21940813

RESUMO

PREMISE OF THE STUDY: Many plant species elongate their shoots in response to neighbor proximity and neighbor height. Although these plastic responses may be beneficial in terms of enhancing light interception, they also may have costs in terms of increased risk of mechanical failure (i.e., lodging or breaking) because of thinner stems. This trade-off between light acquisition and stability may shape the evolution of plastic elongation responses to foliage shade. METHODS: In a field experiment manipulating elongation phenotypes and densities, we tested two hypotheses. We predicted that the risks of mechanical failure depend on plastic elongation and/or on characteristics of the immediate neighborhood, such as density and neighbor height. Further, we predicted that plants that fail mechanically would have reduced fitness. KEY RESULTS: Mechanical failure was earlier and more frequent at high density and showed a complex interaction with neighborhood characteristics such as relative height of the neighbors and the expression of early plasticity. Plants that broke earlier had shorter lifespan and lower reproductive output. CONCLUSIONS: Our results show that depending on the height and density of the group, plastic elongation responses can remain advantageous despite costs of increased risk of mechanical failure of the taller stems, as mechanical failure was not associated with strong costs in terms of reduced lifespan or seed production. The overall benefits of elongation outweigh the costs resulting in selection for elongation at the population level.


Assuntos
Impatiens/fisiologia , Luz , Fenômenos Biomecânicos , Meio Ambiente , Impatiens/anatomia & histologia , Impatiens/crescimento & desenvolvimento , Fenótipo
11.
Front Plant Sci ; 11: 803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625224

RESUMO

Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.

12.
Am Nat ; 173(2): 241-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19140769

RESUMO

The interacting effects of different environmental cues in determining a plant's phenotype and performance are poorly understood aspects of phenotypic plasticity. We examined the interacting effects of shading and mechanical stress (MS) on growth, reproduction, and mechanical stability. We subjected 10 grassland genotypes and 10 forest genotypes of Impatiens capensis to two levels of spectral shading and two levels of MS. Shade induced the production of taller, thinner internodes, but this response was inhibited by MS. This interactive effect was stronger in the grassland genotypes than in the forest genotypes, indicating that shade avoidance can be suppressed by MS and that the degree of this suppression differs between habitats. Among genotypes, greater plasticity in shade-induced internode elongation resulted in a larger reduction in the ability of plants to carry their own weight. This suggests that the occurrence of mechanical constraints may strongly contribute to the selection against shade-induced elongation responses in forest understory genotypes. Our results show that combined responses to different environmental cues can result in a fine-tuning of phenotypic expression by plants by maintaining the potential to strongly respond to single environmental cues but also by preventing potential future costs resulting from poor adaptation to other stresses.


Assuntos
Adaptação Biológica/fisiologia , Escuridão , Impatiens/crescimento & desenvolvimento , Fenótipo , Caules de Planta/crescimento & desenvolvimento , Estresse Mecânico , Adaptação Biológica/genética , Ecossistema , Genótipo , Impatiens/genética , Modelos Biológicos , Caules de Planta/anatomia & histologia , Rhode Island
13.
Plant Cell Environ ; 32(6): 704-12, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19183298

RESUMO

In this paper we examined the notion that plant foraging for resources in heterogeneous environments must involve: (1) plasticity at the level of individual modules in reaction to localized environmental signals; and (2) the potential for modification of these responses either by the signals received from connected modules that may be exposed to different conditions, or by the signals reflecting the overall resource status of the plant. A conceptual model is presented to illustrate how plant foraging behaviour is achieved through these processes acting in concert, from the signal reception through signal transduction to morphological or physiological response. Evidence to support the concept is reviewed, using selective root placement under nutritionally heterogeneous conditions and elongation responses of stems and petioles to shade as examples. We discussed how the adoption of this model can promote understanding of the ecological significance of foraging behaviour. We also identified a need to widen the experimental repertoires of both molecular physiology and ecology in order to increase our insight into both the regulation and functioning of foraging responses, and their relationship with the patterns of environmental heterogeneity under which plants have evolved.


Assuntos
Meio Ambiente , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Adaptação Fisiológica , Luz
14.
Ann Bot ; 103(2): 377-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18713824

RESUMO

BACKGROUND AND AIMS: Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. METHODS: Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. KEY RESULTS: Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. CONCLUSIONS: The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems.


Assuntos
Inundações , Variação Genética , Característica Quantitativa Herdável , Solo , Trifolium/genética , Trifolium/fisiologia , Análise de Variância , Biomassa , Genótipo , Dinâmica Populacional , Seleção Genética
15.
Ann Bot ; 104(6): 1057-67, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19687030

RESUMO

BACKGROUND AND AIMS: Intraspecific variation in flooding tolerance is the basic pre-condition for adaptive flooding tolerance to evolve, and flooding-induced shoot elongation is an important trait that enables plants to survive shallow, prolonged flooding. Here an investigation was conducted to determine to what extent variation in flooding-induced leaf elongation exists among and within populations of the wetland species Rumex palustris, and whether the magnitude of elongation can be linked to habitat characteristics. METHODS: Offspring of eight genotypes collected in each of 12 populations from different sites (ranging from river mudflats with dynamic flooding regimes to areas with stagnant water) were submerged, and petioles, laminas and roots were harvested separately to measure traits related to elongation and plant growth. KEY RESULTS: We found strong elongation of petioles upon submergence, and both among- and within-population variation in this trait, not only in final length, but also in the timing of the elongation response. However, the variation in elongation responses could not be linked to habitat type. CONCLUSIONS: Spatio-temporal variation in the duration and depth of flooding in combination with a presumably weak selection against flooding-induced elongation may have contributed to the maintenance of large genetic variation in flooding-related traits among and within populations.


Assuntos
Inundações , Variação Genética , Brotos de Planta/crescimento & desenvolvimento , Rumex/crescimento & desenvolvimento , Rumex/genética , Análise de Variância , Biomassa , Genótipo , Geografia , Folhas de Planta/anatomia & histologia , Brotos de Planta/genética , Rumex/anatomia & histologia , Especificidade da Espécie
16.
Funct Plant Biol ; 44(9): 858-866, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480614

RESUMO

Flooding is a compound stress, imposing strong limitations on plant development. The expression of adaptive traits that alleviate flooding stress may be constrained if floodwater levels are too deep. For instance, adventitious root outgrowth is typically less profound in completely submerged plants than in partially submerged plants, suggesting additional constraints in full submergence. As both oxygen and carbohydrates are typically limited resources under submergence, we tested the effects of oxygen concentration in the floodwater and carbohydrate status of the plants on flooding-induced adventitious root formation in Solanum dulcamara L. Partially submerged plants continued to form adventitious roots in low-oxygen floodwater, whereas completely submerged plants developed hardly any roots, even in floodwater with twice the ambient oxygen concentration. This suggests that contact with the atmosphere, enabling internal aeration, is much more important to optimal adventitious root formation than floodwater oxygen concentrations. If plants were depleted of carbohydrates before flooding, adventitious root formation in partial submergence was poor, unless high light was provided. Thus, either stored or newly produced carbohydrates can fuel adventitious root formation. These results imply that the impact of an environmental stress factor like flooding on plant performance may strongly depend on the interplay with other environmental factors.

17.
Front Plant Sci ; 7: 364, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064974

RESUMO

Clonal plants can form dense canopies in which plants of different genetic origin are competing for the uptake of essential resources. The competitive relationships among these clones are likely to be affected by extreme environmental conditions, such as prolonged drought spells, which are predicted to occur more frequently due to global climate change. This, in turn, may alter characteristics of the ecological system and its associated functioning. We hypothesized that the relative success of individual clones will depend on the size of the ramets as ramets with larger leaves and longer petioles (large ramets) were predicted to have a competitive advantage in terms of increased light interception over smaller-sized ramets. Under drier conditions the relative performances of genotypes were expected to change leading to a change in genotype ranking. We also hypothesized that increased genotypic and phenotypic diversity will increase stand performance and resistance to drought. These hypotheses and the mechanisms responsible for shifts in competitive relationships were investigated by subjecting genotypes of the important pasture legume Trifolium repens to competition with either genetically identical clones, genetically different but similarly sized clones, or genetically as well as morphologically different clones under well-watered and dry conditions. Competitive relationships were affected by ramet size with large genotypes outperforming small genotypes in diverse stands in terms of biomass production. However, large genotypes also produced relatively fewer ramets than small genotypes and could not benefit in terms of clonal reproduction from competing with smaller genotypes, indicating that evolutionary shifts in genotype composition will depend on whether ramet size or ramet number is under selection. In contrast to our hypotheses, diversity did not increase stand performance under different selection regimes and genotype ranking was hardly affected by soil moisture, indicating that increasing fluctuations in water availability result in few short-term effects on genotypic diversity in this stoloniferous grassland species. Communities dominated by stoloniferous herbs such as T. repens may be relatively resilient to environmental change and to low levels of genetic diversity.

18.
Am Nat ; 163(4): 548-63, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15122502

RESUMO

The frequency and predictability of different selective environments are important parameters in models for the evolution of plasticity but have rarely been measured empirically in natural populations. We used an experimental phytometer approach to examine the frequency, predictability, and environmental determinants of heterogeneous selection on phytochrome-mediated shade-avoidance responses in a natural population of the annual plant Impatiens capensis. The strength and direction of selection on shade-avoidance traits varied substantially on a fine spatial scale. The shade-avoidance phenotype had high relative fecundity in some microsites but was disadvantageous in other microsites. Local seedling density proved to be a surprisingly poor predictor of microenvironmental variation in the strength and direction of selection on stem elongation in this study population. At least some of this unpredictability resulted from microenvironmental variation in water availability; the shade-avoidance phenotype was more costly in dry microsites. Thus, environmental heterogeneity in resource availability can affect the relative costs and benefits of expressing shade-avoidance traits independent of local seedling density, the inductive environmental cue. Theory predicts that these conditions may promote local genetic differentiation in reaction norms in structured populations, as observed in I. capensis.


Assuntos
Impatiens/genética , Impatiens/fisiologia , Luz , Seleção Genética , Adaptação Fisiológica/genética , Evolução Biológica , Ecossistema , Plântula/genética , Plântula/fisiologia
19.
Oecologia ; 117(1-2): 1-8, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28308474

RESUMO

Plant species from open habitats often show pronounced responses to shading. Apart from a reduction in growth, shading can lead to marked changes in morphology and architecture, and it may affect the rate of plant development. Natural shade comprises two basically different features, a reduction in light quantity (amount of radiation) and changes in the spectral light quality. The first aspect represents changes in resource availability, while the latter acts as a source of information for plants and can prompt morphogenetic responses. A greenhouse experiment was carried out to study the effects of changes in light quality and quantity on the growth, morphology and development of two stoloniferous Potentilla species. Individual plants were subjected to three light treatments: (1) full daylight (control); and two shade treatments, in which (2) light quantity (photon flux density) and (3) light spectral quality (red/far-red ratio) were changed independently. Plant development was followed throughout the study. Morphological parameters, biomass and clonal offspring production were measured at the end of the experiment. Morphological traits such as petiole length, leaf blade characteristics and investment patterns into spacers showed high degrees of shade-induced plasticity in both species. With a few exceptions, light quality mainly affected morphological variables, while production parameters were most responsive to changes in light quantity. Potentilla anserina allocated resources preferentially to established rosettes at the cost of stolon growth and branching, while in P. reptans, all parameters related to development and allocation were slowed down to the same extent by light limitation. Light quality changes also positively affected biomass production via changes in leaf allocation. Changes in the spectral light quality had major effects on the size of modular structures (leaves, ramets), whereas changes in light quantity mainly affected their numbers.

20.
Oecologia ; 110(4): 478-486, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307238

RESUMO

Shade-induced changes in the branching pattern of clonal plants can lead to conspicuous modifications of their growth form and architecture. It has been hypothesized that reduced branching in shade may be an adaptive trait, enabling clonal plants to escape from unfavourable patches in a heterogeneous environment by allocating resources preferentially to the growth of the main axis (i.e. linear expansion), rather than to local proliferation by branching. However, such an adaptionist interpretation may be unjustified if (1) branching frequency is a function of the ontogenetic stage of plants, and if (2) shading slows down the ontogenetic development of plants, thereby delaying branch formation. In this case, architectural differences between sun- and shade-grown individuals, harvested at the same chronological age, may not represent a functional response to changes in light conditions, but may be a by-product of effects of shade on the rate of plant development. To distinguish between these two alternatives, individuals of the stoloniferous herb Potentilla reptans were subjected to three experimental light conditions: a control treatment providing full daylight, and two shade treatments: neutral shade (13% of ambient PPFD; no changes in light spectral composition) and simulated canopy shade (13% PPFD and a reduced red:far-red ratio). Plant development was followed throughout the experiment by daily monitoring primary stolon growth as well as branch and leaf initiation. Biomass and clonal offspring production were measured when plants were harvested. At the end of the experiment shaded plants had produced significantly fewer branches than clones grown in full daylight. In all three treatments, however, initiation of secondary stolons occurred at the same developmental stage of individual ramets. Shading significantly slowed down the ontogenetic development of plants and this resulted in the observed differences in branching patterns between sun- and shade-grown individuals, when compared at the same chronological age. These results hence provide evidence that shade-induced changes in the branching pattern of clonal plants can be due to purely allometric effects. Implications for interpreting architectural changes in terms of functional shade-avoidance responses are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA