Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 75(2): 407-14, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19029287

RESUMO

The L-type calcium channel (LTCC) isoforms Ca(v)1.2 and Ca(v)1.3 display similar 1,4-dihydropyridine (DHP) binding properties and are both expressed in mammalian brain. Recent work implicates Ca(v)1.3 channels as interesting drug targets, but no isoform-selective modulators exist. It is also unknown to what extent Ca(v)1.1 and Ca(v)1.4 contribute to L-type-specific DHP binding activity in brain. To address this question and to determine whether DHPs can discriminate between Ca(v)1.2 and Ca(v)1.3 binding pockets, we combined radioreceptor assays and quantitative polymerase chain reaction (qPCR). We bred double mutants (Ca(v)-DM) from mice expressing mutant Ca(v)1.2 channels [Ca(v)1.2DHP(-/-)] lacking high affinity for DHPs and from Ca(v)1.3 knockouts [Ca(v)1.3(-/-)]. (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) and Ca(v)-DM brains was reduced to 15.1 and 4.4% of wild type, respectively, indicating that Ca(v)1.3 accounts for 10.7% of brain LTCCs. qPCR revealed that Ca(v)1.1 and Ca(v)1.4 alpha(1) subunits comprised 0.08% of the LTCC transcripts in mouse whole brain, suggesting that they cannot account for the residual binding. Instead, this could be explained by low-affinity binding (127-fold K(d) increase) to the mutated Ca(v)1.2 channels. Inhibition of (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) (predominantly Ca(v)1.3) and wild-type (predominantly Ca(v)1.2) brain membranes by unlabeled DHPs revealed a 3- to 4-fold selectivity of nitrendipine and nifedipine for the Ca(v)1.2 binding pocket, a finding further confirmed with heterologously expressed channels. This suggests that small differences in their binding pockets may allow development of isoform-selective modulators for LTCCs and that, because of their very low expression, Ca(v)1.1 and Ca(v)1.4 are unlikely to serve as drug targets to treat CNS diseases.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Di-Hidropiridinas/metabolismo , Isoformas de Proteínas/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Encéfalo/metabolismo , Canais de Cálcio Tipo L/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética
2.
J Clin Invest ; 113(10): 1430-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15146240

RESUMO

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Assuntos
Afeto/fisiologia , Canais de Cálcio Tipo L/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Ilhotas Pancreáticas/fisiologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Afeto/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/genética , Di-Hidropiridinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
3.
J Biol Chem ; 279(53): 55211-7, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15504730

RESUMO

Replacement of L-type Ca(2+) channel alpha(1) subunit residue Thr-1066 in segment IIIS5 by a tyrosine residue conserved in the corresponding positions of non-L-type Ca(2+) channels eliminates high dihydropyridine sensitivity through a steric mechanism. To determine the effects of this mutation on phenylalkylamine interaction, we exploited the availability of Ca(v)1.2DHP(-/-) mice containing the T1066Y mutation. In contrast to dihydropyridines, increased protein-dependent binding of the phenylalkylamine (-)-[(3)H]devapamil occurred to Ca(v)1.2DHP(-/-) mouse brain microsomes. This effect could be attributed to an at least 2-fold increase in affinity as determined by saturation analysis and binding inhibition experiments. The latter also revealed a higher affinity for (-)-verapamil but not for (-)-gallopamil. The mutation caused a pronounced slowing of (-)-[(3)H]devapamil dissociation, indicating a stabilization of the drug-channel complex. The increased affinity of mutant channels was also evident in functional studies after heterologous expression of wild type and T1066Y channels in Xenopus laevis oocytes. 100 mum (-)-verapamil inhibited a significantly larger fraction of Ba(2+) inward current through mutant than through WT channels. Our results provide evidence that phenylalkylamines also interact with the IIIS5 helix and that the geometry of the IIIS5 helix affects the access and/or binding of different chemical classes of Ca(2+) channel blockers to their overlapping binding domains. Mutation of Thr-1066 to a non-L-type tyrosine residue can be exploited to differentially affect phenylalkylamine and dihydropyridine binding to L-type Ca(2+) channels.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio/química , Cálcio/química , Proteínas de Transporte/genética , Di-Hidropiridinas/química , Mutação , Esteroide Isomerases/genética , Verapamil/análogos & derivados , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Galopamil/farmacologia , Homozigoto , Hibridização In Situ , Isradipino/farmacologia , Cinética , Camundongos , Camundongos Transgênicos , Microssomos/metabolismo , Modelos Biológicos , Oócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Proteínas Recombinantes/química , Tirosina/química , Verapamil/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA