Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(29): 16976-16984, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636254

RESUMO

Microtubules are tubular polymers with essential roles in numerous cellular activities. Structures of microtubules have been captured at increasing resolution by cryo-EM. However, dynamic properties of the microtubule are key to its function, and this behavior has proved difficult to characterize at a structural level due to limitations in existing structure determination methods. We developed a high-resolution cryo-EM refinement method that divides an imaged microtubule into its constituent protofilaments, enabling deviations from helicity and other sources of heterogeneity to be quantified and corrected for at the single-subunit level. We demonstrate that this method improves the resolution of microtubule 3D reconstructions and substantially reduces anisotropic blurring artifacts, compared with methods that utilize helical symmetry averaging. Moreover, we identified an unexpected, discrete behavior of the m-loop, which mediates lateral interactions between neighboring protofilaments and acts as a flexible hinge between them. The hinge angle adopts preferred values corresponding to distinct conformations of the m-loop that are incompatible with helical symmetry. These hinge angles fluctuate in a stochastic manner, and perfectly cylindrical microtubule conformations are thus energetically and entropically penalized. The hinge angle can diverge further from helical symmetry at the microtubule seam, generating a subpopulation of highly distorted microtubules. However, the seam-distorted subpopulation disappears in the presence of Taxol, a microtubule stabilizing agent. These observations provide clues into the structural origins of microtubule flexibility and dynamics and highlight the role of structural polymorphism in defining microtubule behavior.


Assuntos
Microtúbulos/ultraestrutura , Animais , Bovinos , Microscopia Crioeletrônica , Microtúbulos/química , Simulação de Dinâmica Molecular
2.
Proc Natl Acad Sci U S A ; 117(3): 1478-1484, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900364

RESUMO

Members of the cofilin/ADF family of proteins sever actin filaments, increasing the number of filament ends available for polymerization or depolymerization. Cofilin binds actin filaments with positive cooperativity, forming clusters of contiguously bound cofilin along the filament lattice. Filament severing occurs preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments and is biased at 1 side of a cluster. A molecular understanding of cooperative binding and filament severing has been impeded by a lack of structural data describing boundaries. Here, we apply methods for analyzing filament cryo-electron microscopy (cryo-EM) data at the single subunit level to directly investigate the structure of boundaries within partially decorated cofilactin filaments. Subnanometer resolution maps of isolated, bound cofilin molecules and an actin-cofilactin boundary indicate that cofilin-induced actin conformational changes are local and limited to subunits directly contacting bound cofilin. An isolated, bound cofilin compromises longitudinal filament contacts of 1 protofilament, consistent with a single cofilin having filament-severing activity. An individual, bound phosphomimetic (S3D) cofilin with weak severing activity adopts a unique binding mode that does not perturb actin structure. Cofilin clusters disrupt both protofilaments, consistent with a higher severing activity at boundaries compared to single cofilin. Comparison of these structures indicates that this disruption is substantially greater at pointed end sides of cofilactin clusters than at the barbed end. These structures, with the distribution of bound cofilin clusters, suggest that maximum binding cooperativity is achieved when 2 cofilins occupy adjacent sites. These results reveal the structural origins of cooperative cofilin binding and actin filament severing.


Assuntos
Citoesqueleto de Actina/química , Fatores de Despolimerização de Actina/química , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Fosforilação , Ligação Proteica , Coelhos
3.
Proc Natl Acad Sci U S A ; 115(6): 1292-1297, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358376

RESUMO

Myosins adjust their power outputs in response to mechanical loads in an isoform-dependent manner, resulting in their ability to dynamically adapt to a range of motile challenges. Here, we reveal the structural basis for force-sensing based on near-atomic resolution structures of one rigor and two ADP-bound states of myosin-IB (myo1b) bound to actin, determined by cryo-electron microscopy. The two ADP-bound states are separated by a 25° rotation of the lever. The lever of the first ADP state is rotated toward the pointed end of the actin filament and forms a previously unidentified interface with the N-terminal subdomain, which constitutes the upper half of the nucleotide-binding cleft. This pointed-end orientation of the lever blocks ADP release by preventing the N-terminal subdomain from the pivoting required to open the nucleotide binding site, thus revealing how myo1b is inhibited by mechanical loads that restrain lever rotation. The lever of the second ADP state adopts a rigor-like orientation, stabilized by class-specific elements of myo1b. We identify a role for this conformation as an intermediate in the ADP release pathway. Moreover, comparison of our structures with other myosins reveals structural diversity in the actomyosin binding site, and we reveal the high-resolution structure of actin-bound phalloidin, a potent stabilizer of filamentous actin. These results provide a framework to understand the spectrum of force-sensing capacities among the myosin superfamily.


Assuntos
Actinas/química , Actinas/metabolismo , Microscopia Crioeletrônica/métodos , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Faloidina/química , Faloidina/metabolismo , Conformação Proteica
4.
J Biol Chem ; 293(15): 5377-5383, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29463680

RESUMO

Cofilin/ADF proteins are actin-remodeling proteins, essential for actin disassembly in various cellular processes, including cell division, intracellular transport, and motility. Cofilins bind actin filaments cooperatively and sever them preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments. The cooperative binding to actin has been proposed to originate from conformational changes that propagate allosterically from clusters of bound cofilin to bare actin segments. Estimates of the lengths over which these cooperative conformational changes propagate vary dramatically, ranging from 2 to >100 subunits. Here, we present a general, structure-based method for detecting from cryo-EM micrographs small variations in filament geometry (i.e. twist) with single-subunit precision. How these variations correlate with regulatory protein occupancy reveals how far allosteric, conformational changes propagate along filaments. We used this method to determine the effects of cofilin on the actin filament twist. Our results indicate that cofilin-induced changes in filament twist propagate only 1-2 subunits from the boundary into the bare actin segment, independently of the boundary polarity (i.e. irrespective of whether or not the bare actin segment flanks the pointed or barbed-end side of the boundary) and the pyrene fluorophore labeling of actin. These observations indicate that the filament twist changes abruptly at boundaries between bare and cofilin-decorated segments, thereby constraining mechanistic models of cooperative actin filament interactions and severing by cofilin. The methods presented here extend the capability of cryo-EM to analyze biologically relevant deviations from helical symmetry in actin as well as other classes of linear polymers.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/química , Animais , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína , Coelhos
5.
J Biol Chem ; 292(48): 19565-19579, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939776

RESUMO

Many biological processes, including cell division, growth, and motility, rely on rapid remodeling of the actin cytoskeleton and on actin filament severing by the regulatory protein cofilin. Phosphorylation of vertebrate cofilin at Ser-3 regulates both actin binding and severing. Substitution of serine with aspartate at position 3 (S3D) is widely used to mimic cofilin phosphorylation in cells and in vitro The S3D substitution weakens cofilin binding to filaments, and it is presumed that subsequent reduction in cofilin occupancy inhibits filament severing, but this hypothesis has remained untested. Here, using time-resolved phosphorescence anisotropy, electron cryomicroscopy, and all-atom molecular dynamics simulations, we show that S3D cofilin indeed binds filaments with lower affinity, but also with a higher cooperativity than wild-type cofilin, and severs actin weakly across a broad range of occupancies. We found that three factors contribute to the severing deficiency of S3D cofilin. First, the high cooperativity of S3D cofilin generates fewer boundaries between bare and decorated actin segments where severing occurs preferentially. Second, S3D cofilin only weakly alters filament bending and twisting dynamics and therefore does not introduce the mechanical discontinuities required for efficient filament severing at boundaries. Third, Ser-3 modification (i.e. substitution with Asp or phosphorylation) "undocks" and repositions the cofilin N terminus away from the filament axis, which compromises S3D cofilin's ability to weaken longitudinal filament subunit interactions. Collectively, our results demonstrate that, in addition to inhibiting actin binding, Ser-3 modification favors formation of a cofilin-binding mode that is unable to sufficiently alter filament mechanical properties and promote severing.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Mimetismo Molecular , Fatores de Despolimerização de Actina/química , Microscopia Crioeletrônica , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Serina/metabolismo
6.
Commun Chem ; 7(1): 164, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079963

RESUMO

Actin filament assembly and the regulation of its mechanical properties are fundamental processes essential for eukaryotic cell function. Residue E167 in vertebrate actins forms an inter-subunit salt bridge with residue K61 of the adjacent subunit. Saccharomyces cerevisiae actin filaments are more flexible than vertebrate filaments and have an alanine at this position (A167). Substitution of this alanine for a glutamic acid (A167E) confers Saccharomyces cerevisiae actin filaments with salt-dependent stiffness similar to vertebrate actins. We developed an optimized cryogenic electron microscopy workflow refining sample preparation and vitrification to obtain near-atomic resolution structures of wild-type and A167E mutant Saccharomyces cerevisiae actin filaments. The difference between these structures allowed us to pinpoint the potential binding site of a filament-associated cation that controls the stiffness of the filaments in vertebrate and A167E Saccharomyces cerevisiae actins. Through an analysis of previously published high-resolution reconstructions of vertebrate actin filaments, along with a newly determined high-resolution vertebrate actin structure in the absence of potassium, we identified a unique peak near residue 167 consistent with the binding of a magnesium ion. Our findings show how magnesium can contribute to filament stiffening by directly bridging actin subunits and allosterically affecting the orientation of the DNase-I binding loop of actin, which plays a regulatory role in modulating actin filament stiffness and interactions with regulatory proteins.

7.
Cancers (Basel) ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784501

RESUMO

(1) Background: The hedgehog (HH) signaling pathway is a key regulator of embryonic patterning, tissue regeneration, stem cell renewal, and cancer growth. The smoothened (SMO) protein regulates the HH signaling pathway and has demonstrated oncogenic activity. (2) Methods: To clarify the role of the HH signaling pathway in tumorigenesis, the expression profile of key HH signaling molecules, including SMO, PTCH1, GLI1, GLI2, and GLI3, were determined in 33 cancer cell lines and normal prostate cells and tissues. We performed a computational analysis of the upstream region of the SMO gene to identify the regulatory elements. (3) Results: Three potential CpG islands and several putative SMO promoter elements were identified. Luciferase reporter assays mapped key SMO promoter elements, and functional binding sites for SP1, AP1, CREB, and AP-2α transcription factors in the core SMO promoter region were confirmed. A hypermethylated SMO promoter was identified in several cancer cell lines suggesting an important role for epigenetic silencing of SMO expression in certain cancer cells. (4) Discussion: These results have important implications for our understanding of regulatory mechanisms controlling HH pathway activity and the molecular basis of SMO gene function. Moreover, this study may prove valuable for future research aimed at producing therapeutic downregulation of SMO expression in cancer cells.

8.
Nat Struct Mol Biol ; 25(10): 918-927, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224736

RESUMO

Actin-cross-linking proteins assemble actin filaments into higher-order structures essential for orchestrating cell shape, adhesion, and motility. Missense mutations in the tandem calponin homology domains of their actin-binding domains (ABDs) underlie numerous genetic diseases, but a molecular understanding of these pathologies is hampered by the lack of high-resolution structures of any actin-cross-linking protein bound to F-actin. Here, taking advantage of a high-affinity, disease-associated mutant of the human filamin A (FLNa) ABD, we combine cryo-electron microscopy and functional studies to reveal at near-atomic resolution how the first calponin homology domain (CH1) and residues immediately N-terminal to it engage actin. We further show that reorientation of CH2 relative to CH1 is required to avoid clashes with actin and to expose F-actin-binding residues on CH1. Our data explain localization of disease-associated loss-of-function mutations to FLNaCH1 and gain-of-function mutations to the regulatory FLNaCH2. Sequence conservation argues that this provides a general model for ABD-F-actin binding.


Assuntos
Actinas/química , Filaminas/química , Actinas/metabolismo , Microscopia Crioeletrônica , Filaminas/metabolismo , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA