Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 88(1): 77-88, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20130681

RESUMO

The Rvb1 and Rvb2 proteins are 2 members of the AAA+ family, involved in roles as diverse as chromatin remodeling, transcription, small nucleolar RNA maturation, cellular transformation, signaling of apoptosis and mitosis. These proteins are capable of playing a role in such diverse cellular activities because they are components of different macromolecular assemblies. In the last few years, there has been a number of groups reporting on the structure of purified Rvbs. The reported results have been rather controversial, because there are significant differences observed among the published structures in spite of the high degree of homology among these proteins. Surprisingly, contradictions are observed not only between structures representing the Rvb proteins from different species, but also between protein structures from the same species. This review describes the available Rvb structures from different species and also makes a comparative analysis of them. Finally, we identify some aspects of these structural studies worth pursuing in additional investigations to ensure that the reported structures reflect physiologically relevant conformations of the Rvb1-Rvb2 complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Humanos , Modelos Moleculares , Ligação Proteica/genética , Conformação Proteica , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
Biochem Cell Biol ; 88(1): 29-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20130677

RESUMO

Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Animais , Proteínas de Transporte/genética , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Eucariotos/enzimologia , Humanos , Modelos Biológicos , Modelos Moleculares , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
3.
Front Microbiol ; 10: 2665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849856

RESUMO

The enteric pathogen, Salmonella enterica is a major cause of human gastroenteritis globally and with increasing bacterial resistance to antibiotics, alternative solutions are urgently needed. Single domain antibodies (sdAbs), the smallest antibody fragments that retain antigen binding specificity and affinity, are derived from variable heavy-chain only fragments (VHH) of camelid heavy-chain-only immunoglobulins. SdAbs typically contain a single disulfide bond simplifying recombinant protein production in microbial systems. These factors make sdAbs ideally suited for the development of effective anti-bacterial therapeutics. To this end, we generated an anti-Salmonella VHH library from which we screened for high affinity sdAbs. We present a novel sdAb (Abi-Se07) that targets the Salmonella virulence factor, FliC, required for bacterial motility and invasion of host cells. We demonstrate that Abi-Se07 bound FliC with a K D of 16.2 ± 0.1 nM. In addition, Abi-Se07 exhibited cross-serovar binding to whole cells of S. enterica serovar Typhimurium, Heidelberg, and Hadar. Abi-Se07 significantly inhibited bacterial motility and significantly reduced S. enterica colonization in a more native environment of chicken jejunum epithelium. Taken together, we have identified a novel anti-Salmonella sdAb and discuss future efforts toward therapeutic development.

4.
Structure ; 25(3): 469-481, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28238534

RESUMO

CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Geobacillus stearothermophilus/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Exorribonucleases/metabolismo , Hidrólise , Modelos Moleculares , Multimerização Proteica , Estabilidade de RNA , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Cell Rep ; 20(11): 2735-2748, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28903051

RESUMO

A comprehensive view of molecular chaperone function in the cell was obtained through a systematic global integrative network approach based on physical (protein-protein) and genetic (gene-gene or epistatic) interaction mapping. This allowed us to decipher interactions involving all core chaperones (67) and cochaperones (15) of Saccharomyces cerevisiae. Our analysis revealed the presence of a large chaperone functional supercomplex, which we named the naturally joined (NAJ) chaperone complex, encompassing Hsp40, Hsp70, Hsp90, AAA+, CCT, and small Hsps. We further found that many chaperones interact with proteins that form foci or condensates under stress conditions. Using an in vitro reconstitution approach, we demonstrate condensate formation for the highly conserved AAA+ ATPases Rvb1 and Rvb2, which are part of the R2TP complex that interacts with Hsp90. This expanded view of the chaperone network in the cell clearly demonstrates the distinction between chaperones having broad versus narrow substrate specificities in protein homeostasis.


Assuntos
Chaperonas Moleculares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Epistasia Genética , Redes Reguladoras de Genes , Genes Essenciais , Proteínas de Choque Térmico HSP90/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Saccharomyces cerevisiae/genética , Estresse Fisiológico
6.
J Mol Biol ; 427(10): 1875-86, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25636407

RESUMO

Rvb1 and Rvb2 are conserved AAA+ (ATPases associated with diverse cellular activities) proteins found at the core of large multicomponent complexes that play key roles in chromatin remodeling, integrity of the telomeres, ribonucleoprotein complex biogenesis and other essential cellular processes. These proteins contain an AAA+ domain for ATP binding and hydrolysis and an insertion domain proposed to bind DNA/RNA. Yeast Rvb1 and Rvb2 proteins oligomerize primarily as heterohexameric rings. The six AAA+ core domains form the body of the ring and the insertion domains protrude from one face of the ring. Conversely, human Rvbs form a mixture of hexamers and dodecamers made of two stacked hexamers interacting through the insertion domains. Human dodecamers adopt either a contracted or a stretched conformation. Here, we found that yeast Rvb1/Rvb2 complexes when assembled in vivo mainly form hexamers but they also assemble as dodecamers with a frequency lower than 10%. Yeast dodecamers adopt not only the stretched and contracted structures that have been described for human Rvb1/Rvb2 dodecamers but also intermediate conformations in between these two extreme states. The orientation of the insertion domains of Rvb1 and Rvb2 proteins in these conformers changes as the dodecamer transitions from the stretched structure to a more contracted structure. Finally, we observed that for the yeast proteins, oligomerization as a dodecamer inhibits the ATPase activity of the Rvb1/Rvb2 complex. These results indicate that although human and yeast Rvb1 and Rvb2 proteins share high degree of homology, there are significant differences in their oligomeric behavior and dynamics.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/química , DNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , DNA Helicases/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
J Mol Biol ; 404(3): 478-92, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20934430

RESUMO

Rvb1 and Rvb2 are essential AAA(+) (ATPases associated with diverse cellular activities) helicases, which are important components of critical complexes such as chromatin remodeling and telomerase complexes. The oligomeric state of the Rvb proteins has been controversial. Independent studies from several groups have described the yeast and human Rvb1/Rvb2 complex both as a single and as a double hexameric ring complex. We found that histidine-tagged constructs of yeast Rvb proteins employed in some of these studies induced the assembly of double hexameric ring Rvb1/Rvb2 complexes. Instead, untagged versions of these proteins assemble into single hexameric rings. Furthermore, purified endogenous untagged Rvb1/Rvb2 complexes from Saccharomyces cerevisiae were also found as single hexameric rings, similar to the complexes assembled in vitro from the purified untagged components. These results demonstrate that some of the differences between the reported structures are caused by histidine tags and imply that further studies on the purified proteins should be carried out using untagged constructs.


Assuntos
Adenosina Trifosfatases/química , DNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Proteínas de Transporte/química , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Helicases/genética , Histidina/química , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
8.
J Mol Biol ; 376(5): 1320-33, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18234224

RESUMO

Rvb1 and Rvb2 are highly conserved proteins present in archaea and eukaryotes. These proteins are members of a large superfamily of ATPases associated with diverse cellular activities--the AAA(+) superfamily. The Rvbs have been found in multiprotein complexes that have wide ranges of functions, including DNA repair, transcription, chromatin remodeling, ribosomal RNA processing, and small nucleolar RNA accumulation. Here we show that yeast Rvb1 and Rvb2 form a heterohexameric ring structure rather than the double-hexameric ring structure proposed to be formed by the human proteins. The yeast Rvb1/2 complex has enhanced ATPase activity compared with the individual Rvb proteins; furthermore, the ATPase activity of the Rvb1/2 complex is further increased in the presence of double-stranded DNA with 5' or 3' overhangs. The yeast Rvb1/2 ring undergoes nucleotide-dependent conformational changes as observed by electron microscopy. In addition, consistent with a role for these proteins in chromatin remodeling and DNA repair, the yeast Rvb1/2 complex exhibits DNA helicase activity with a preference for unwinding in the 5'-to-3' direction. The individual Rvb proteins also exhibit helicase activity, albeit weaker than that of the Rvb1/2 complex. These results clearly establish the yeast Rvb1/2 complex as a heterohexameric ATP-dependent DNA helicase and highlight the possible roles played by the Rvb proteins within multiprotein complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Transporte/química , DNA Helicases/química , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Fatores de Transcrição
9.
J Cell Biol ; 180(3): 563-78, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18268103

RESUMO

Hsp90 is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes. In this study, we identify a function for the chaperone in RNA processing and maintenance. This functionality of Hsp90 involves two recently identified interactors of the chaperone: Tah1 and Pih1/Nop17. Tah1 is a small protein containing tetratricopeptide repeats, whereas Pih1 is found to be an unstable protein. Tah1 and Pih1 bind to the essential helicases Rvb1 and Rvb2 to form the R2TP complex, which we demonstrate is required for the correct accumulation of box C/D small nucleolar ribonucleoproteins. Together with the Tah1 cofactor, Hsp90 functions to stabilize Pih1. As a consequence, the chaperone is shown to affect box C/D accumulation and maintenance, especially under stress conditions. Hsp90 and R2TP proteins are also involved in the proper accumulation of box H/ACA small nucleolar RNAs.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/genética , Substâncias Macromoleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Dobramento de Proteína , Processamento Pós-Transcricional do RNA/genética , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA