Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474495

RESUMO

Kratom leaves, consumed by millions worldwide as tea or ground leaf powder, contain multiple alkaloids, with mitragynine being the most abundant and responsible for most effects. Mitragynine is a partial µ-opioid receptor agonist and competitive antagonist at κ- and δ-opioid receptors; however, unlike morphine, it does not activate the ß-arrestin-2 respiratory depression pathway. Due to few human mitragynine data, the largest randomized, between-subject, double-blind, placebo-controlled, dose-escalation study of 500-4000 mg dried kratom leaf powder (6.65-53.2 mg mitragynine) was conducted. LC-MS/MS mitragynine and 7-hydroxymitragynine plasma concentrations were obtained after single and 15 daily doses. Mitragynine and 7-hydroxymitragynine Cmax increased dose proportionally, and AUC was slightly more than dose proportional. The median mitragynine Tmax was 1.0-1.3 h after single and 1.0-1.7 h after multiple doses; for 7-hydroxymitragynine Tmax, it was 1.2-1.8 h and 1.3-2.0 h. Steady-state mitragynine concentrations were reached in 8-9 days and 7-hydroxymitragynine within 7 days. The highest mean mitragynine T1/2 was 43.4 h after one and 67.9 h after multiple doses, and, for 7-hydroxymitragynine, it was 4.7 and 24.7 h. The mean 7-hydroxy-mitragynine/mitragynine concentration ratios were 0.20-0.31 after a single dose and decreased (0.15-0.21) after multiple doses. These mitragynine and 7-hydroxymitragynine data provide guidance for future clinical kratom dosing studies and an interpretation of clinical and forensic mitragynine and 7-hydroxymitragynine concentrations.


Assuntos
Mitragyna , Alcaloides de Triptamina e Secologanina , Humanos , Mitragyna/metabolismo , Pós , Cromatografia Líquida , Espectrometria de Massas em Tandem , Alcaloides de Triptamina e Secologanina/metabolismo , Folhas de Planta/metabolismo
2.
Clin Chem ; 69(7): 724-733, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228223

RESUMO

BACKGROUND: Cannabis is increasingly used both medically and recreationally. With widespread use, there is growing concern about how to identify cannabis-impaired drivers. METHODS: A placebo-controlled randomized double-blinded protocol was conducted to study the effects of cannabis on driving performance. One hundred ninety-one participants were randomized to smoke ad libitum a cannabis cigarette containing placebo or delta-9-tetrahydrocannabinol (THC) (5.9% or 13.4%). Blood, oral fluid (OF), and breath samples were collected along with longitudinal driving performance on a simulator (standard deviation of lateral position [SDLP] and car following [coherence]) over a 5-hour period. Law enforcement officers performed field sobriety tests (FSTs) to determine if participants were impaired. RESULTS: There was no relationship between THC concentrations measured in blood, OF, or breath and SDLP or coherence at any of the timepoints studied (P > 0.05). FSTs were significant (P < 0.05) for classifying participants into the THC group vs the placebo group up to 188 minutes after smoking. Seventy-one minutes after smoking, FSTs classified 81% of the participants who received active drug as being impaired. However, 49% of participants who smoked placebo (controls) were also deemed impaired at this same timepoint. Combining a 2 ng/mL THC cutoff in OF with positive findings on FSTs reduced the number of controls classified as impaired to zero, 86 minutes after smoking the placebo. CONCLUSIONS: Requiring a positive toxicology result in addition to the FST observations substantially improved the classification accuracy regarding possible driving under the influence of THC by decreasing the percentage of controls classified as impaired.


Assuntos
Condução de Veículo , Cannabis , Dirigir sob a Influência , Alucinógenos , Fumar Maconha , Humanos , Dronabinol , Agonistas de Receptores de Canabinoides
3.
Pharmacol Res ; 187: 106600, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481259

RESUMO

Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.


Assuntos
Cannabis , Dronabinol , Adolescente , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Espectrometria de Massas , Aerossóis/metabolismo
4.
Am J Drug Alcohol Abuse ; 49(1): 76-84, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812240

RESUMO

Background: Accurate drug use identification through subjective self-report and toxicological biosample (hair) analysis are necessary to determine substance use sequelae in youth. Yet consistency between self-reported substance use and robust, toxicological analysis in a large sample of youth is understudied.Objectives: We aim to assess concordance between self-reported substance use and hair toxicological analysis in community-based adolescents.Methods: Hair results by LC-MS/MS and GC-MS/MS and self-reported past-year substance use from an Adolescent Brain Cognitive Development (ABCD) Study subsample (N = 1,390; ages 9-13; 48% female) were compared. The participants were selected for hair selection through two methods: high scores on a substance risk algorithm selected 93%; 7% were low-risk, randomly selected participants. Kappa coefficients the examined concordance between self-report and hair results.Results: 10% of youth self-reported any past-year substance use (e.g. alcohol, cannabis, nicotine, and opiates), while a mostly non-overlapping 10% had hair results indicating recent substance use (cannabis, alcohol, non-prescription amphetamines, cocaine, nicotine, opiates, and fentanyl). In randomly selected low-risk cases, 7% were confirmed positive in hair. Combining methods, 19% of the sample self-reported substance use and/or had a positive hair sample. Kappa coefficient of concordance between self-report and hair results was low (kappa = 0.07; p = .007).Conclusions: Hair toxicology identified substance use in high-risk and low-risk ABCD cohort subsamples. Given low concordance between hair results and self-report, reliance on either method alone would incorrectly categorize 9% as non-users. Multiple methods for characterizing substance use history in youth improves accuracy. Larger representative samples are needed to assess the prevalence of substance use in youth.


Assuntos
Alcaloides Opiáceos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Adolescente , Feminino , Criança , Masculino , Autorrelato , Análise do Cabelo , Nicotina , Espectrometria de Massas em Tandem , Cromatografia Líquida , Detecção do Abuso de Substâncias/métodos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498947

RESUMO

Adulteration is a well-known practice of drug manufacturers at different stages of drug production. The intentional addition of active ingredients to adulterate the primary drug may enhance or mask pharmacological effects or may produce more potent drugs to increase the number of available doses and the dealer's profit. Adulterants found in different drugs change over time in response to different factors. A systematic literature search in PubMed and Scopus databases and official international organizations' websites according to PRISMA guidelines was performed. A total of 724 studies were initially screened, with 145 articles from PubMed and 462 from Scopus excluded according to the criteria described in the Method Section. The remaining 117 records were further assessed for eligibility to exclude articles without sufficient data. Finally, 79 studies were classified as "non-biological" (n = 35) or "biological" (n = 35 case reports; n = 9 case series) according to the samples investigated. Although the seized samples analyses revealed the presence of well-established adulterants such as levamisole for cocaine or paracetamol/acetaminophen for heroin, the reported data disclosed new adulteration practices, such as the use of NPS as cutting agents for classic drugs of abuse and other NPS. For example, heroin adulterated with synthetic cannabinoids or cocaine adulterated with fentanyl/fentalogues raised particular concern. Notably, adulterants play a role in some adverse effects commonly associated with the primary drug, such as levamisole-adulterated cocaine that may induce vasculitis via an autoimmune process. It is essential to constantly monitor adulterants due to their changing availability that may threaten drug consumers' health.


Assuntos
Cocaína , Drogas Ilícitas , Drogas Ilícitas/efeitos adversos , Contaminação de Medicamentos , Levamisol , Fármacos do Sistema Nervoso Central
6.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498963

RESUMO

The aim of this study is to define, for the first time, human methylone and HMMC plasma pharmacokinetics following controlled administration of 50-200 mg methylone to 12 male volunteers. A new LC-MS/MS method was validated to quantify methylone, MDMA, and their metabolites in plasma. The study was a randomized, cross-over, double-blinded and placebo-controlled study, with a total of 468 plasma samples collected. First, 10 µL of MDMA-d5, MDA-d5 and methylone-d3 internal standards were added to 100 µL of plasma. Two mL of chloroform and ethyl acetate 9:1 (v/v) were then added, mixed well and centrifuged. The supernatant was fortified with 0.1 mL acidified methanol and evaporated under nitrogen. Samples were reconstituted with a mobile phase and injected into the LC-MS/MS instrument. The method was fully validated according to OSAC guidelines (USA). Methylone plasma concentrations increased in a dose-proportional manner, as demonstrated by the increasing maximum concentration (Cmax) and area under the curve of concentrations (AUC). Methylone Cmax values were reported as 153, 304, 355 and 604 ng/mL, AUC0-24 values were reported as 1042.8, 2441.2, 3524.4 and 5067.9 h·ng/mL and T1/2 values as 5.8, 6.4, 6.9 and 6.4 h following the 50, 100, 150 and 200 mg doses, respectively. Methylone exhibited rapid kinetics with a Tmax of 1.5 h for the 50 mg dose and 2 h approximately after all the other doses. HMMC exhibited faster kinetics compared to methylone, with a Cmax value that was 10-14-fold lower and an AUC0-24 value that was 21-29-fold lower. Methylone pharmacokinetics was linear across 50-200 mg oral doses in humans, unlike the previously described non-linear oral MDMA pharmacokinetics. An LC-MS/MS method for the quantification of methylone, MDMA and their metabolites in human plasma was achieved. Methylone exhibited linear pharmacokinetics in humans with oral doses of 50-200 mg.


Assuntos
Metanfetamina , Espectrometria de Massas em Tandem , Humanos , Masculino , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metanfetamina/metabolismo , Área Sob a Curva , Administração Oral
7.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131587

RESUMO

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Adulto , Encéfalo , Feminino , Humanos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Análise de Sequência de RNA , Fumar/efeitos adversos , Fumar/genética , Transcriptoma/genética
8.
J Int Neuropsychol Soc ; 27(6): 546-558, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34261558

RESUMO

OBJECTIVE: Verbal memory deficits are linked to cannabis use. However, self-reported episodic use does not allow for assessment of variance from other factors (e.g., cannabis potency, route of consumption) that are important for assessing brain-behavior relationships. Further, co-occurring nicotine use may moderate the influence of cannabis on cognition. Here we utilized objective urinary measurements to assess the relationship between metabolites of cannabis, 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THCCOOH), and nicotine (cotinine) on verbal memory in young adults. METHOD: Adolescents and young adults (n = 103) aged 16-22 completed urinary drug testing and verbal memory assessment (RAVLT). Linear regressions examined the influence of THCCOOH and cotinine quantitative concentrations, and their interaction, on RAVLT scores, controlling for demographics and alcohol. Cannabis intake frequency was also investigated. Secondary analyses examined whether past month or recency of use related to performance, while controlling for THCCOOH and cotinine concentrations. RESULTS: THCCOOH concentration related to both poorer total learning and long delay recall. Cotinine concentration related to poorer short delay recall. Higher frequency cannabis use status was associated with poorer initial learning and poorer short delay. When comparing to self-report, THCCOOH and cotinine concentrations were negatively related to learning and memory performance, while self-report was not. CONCLUSIONS: Results confirm the negative relationship between verbal memory and cannabis use, extending findings with objective urinary THCCOOH, and cotinine concentration measurements. No moderating relationship with nicotine was found, though cotinine concentration independently associated with negative short delay performance. Findings support the use of both urinary and self-report metrics as complementary methods in substance use research.


Assuntos
Cannabis , Adolescente , Cannabis/efeitos adversos , Cognição , Dronabinol , Humanos , Nicotina , Detecção do Abuso de Substâncias , Adulto Jovem
9.
Ther Drug Monit ; 43(1): 52-68, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881779

RESUMO

BACKGROUND: Synthetic cathinones (SCs) are designer analogs of the natural active principle of khat. Since their appearance on the black market in 2003, their popularity has increased annually, and they have become the most seized class of new psychoactive substances reported to the UNODC Early Warning Advisory system. The constant introduction of newly synthesized molecules makes this issue difficult to monitor. The authors reviewed the most recent SC-related fatalities worldwide to highlight new trends of consumption, reporting acute pharmacological and toxicological symptoms, scene investigations, analytical methods, and reported SC concentrations in diverse biological matrices. METHODS: A literature search was performed using scientific databases such as PubMed, Scopus, Science Direct, Web of Science, and Research Gate to identify relevant scientific publications from 2017 to 2020. In addition, a search was conducted through the EU EWS. RESULTS: From 2017 to 2020, 31 different SCs were identified in 75 reported fatal intoxications in the literature, alone or in combination with other substances. The most abused SCs were N-ethylpentylone, N-ethylhexedrone, and 4-chloromethcathinone. The EU EWS included less detail on 72 additional SC-related fatalities from 2017 to 2020. CONCLUSIONS: New SCs continuously replace older natural and synthetic stimulant drugs, making determining the cause of death difficult. Analytical methods and high-performance mass spectrometry instruments are essential to detect the low concentrations of these potent new SCs. Little data are available on the pharmacology of these new drugs; the evaluation of toxicological antemortem and postmortem findings provides critical data on the drug's pharmacology and toxicology and for the interpretation of new SC cases.


Assuntos
Alcaloides , Estimulantes do Sistema Nervoso Central , Overdose de Drogas/mortalidade , Alcaloides/intoxicação , Estimulantes do Sistema Nervoso Central/intoxicação , Humanos , Espectrometria de Massas
10.
Ther Drug Monit ; 43(4): 536-545, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656464

RESUMO

BACKGROUND: Self-report questionnaires, weighing products consumed, and Δ9-tetrahydrocannabinol (THC) biomarkers are established techniques for estimating cannabis exposure. Population pharmacokinetic modeling of plasma THC and metabolite concentrations by incorporating self-reported and weighed products as covariates could improve estimates of THC exposure in regular cannabis users. METHODS: In this naturalistic study, blood samples were obtained from 36 regular smokers of cannabis for analysis of THC and its 2 metabolites at 4 time points: recruitment and during an experimental mobile laboratory assessment that included 3 time points: before, immediately after, and 1 hour after ad libitum legal market flower use. These data were analyzed using an established model of population pharmacokinetics developed from laboratory-controlled cannabis administration data. Elimination and metabolite production clearances were estimated for each subject as well as their daily THC doses and the dose consumed during the ad libitum event. RESULTS: A statistically significant correlation existed between the daily THC dose estimated by self-report questionnaire and population pharmacokinetic modeling (correlation coefficient = 0.79, P < 0.05) between the weighed cannabis smoked ad libitum and that estimated by population pharmacokinetic modeling (correlation coefficient = 0.71, P < 0.05). CONCLUSION: Inclusion of self-reported questionnaire data of THC consumption improved pharmacokinetic model-derived estimates based on measured THC and metabolite concentrations. In addition, the pharmacokinetic-derived dose estimates for the ad libitum smoking event underestimated the THC consumption compared with the weighed amount smoked. Thus, the subjects in this study, who smoked ad libitum and used cannabis products with high concentrations of THC, were less efficient (lower bioavailability) compared with computer-paced smokers of low potency, NIDA cannabis in a laboratory setting.


Assuntos
Dronabinol/farmacocinética , Fumar Maconha , Cannabis , Colorado , Humanos , Fumar Maconha/epidemiologia
11.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769427

RESUMO

Methiopropamine is a novel psychoactive substance (NPS) that is associated with several cases of clinical toxicity, yet little information is available regarding its neuropharmacological properties. Here, we employed in vitro and in vivo methods to compare the pharmacokinetics and neurobiological effects of methiopropamine and its structural analog methamphetamine. Methiopropamine was rapidly distributed to the blood and brain after injection in C57BL/6 mice, with a pharmacokinetic profile similar to that of methamphetamine. Methiopropamine induced psychomotor activity, but higher doses were needed (Emax 12.5 mg/kg; i.p.) compared to methamphetamine (Emax 3.75 mg/kg; i.p.). A steep increase in locomotor activity was seen after a modest increase in the methiopropamine dose from 10 to 12.5 mg/kg, suggesting that a small increase in dosage may engender unexpectedly strong effects and heighten the risk of unintended overdose in NPS users. In vitro studies revealed that methiopropamine mediates its effects through inhibition of norepinephrine and dopamine uptake into presynaptic nerve terminals (IC50 = 0.47 and 0.74 µM, respectively), while the plasmalemmal serotonin uptake and vesicular uptake are affected only at high concentrations (IC50 > 25 µM). In summary, methiopropamine closely resembles methamphetamine with regard to its pharmacokinetics, pharmacodynamic effects and mechanism of action, with a potency that is approximately five times lower than that of methamphetamine.


Assuntos
Encéfalo/efeitos dos fármacos , Metanfetamina/análogos & derivados , Metanfetamina/farmacologia , Metanfetamina/farmacocinética , Neurofarmacologia/métodos , Tiofenos/farmacologia , Tiofenos/farmacocinética , Animais , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacocinética , Estimulantes do Sistema Nervoso Central/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
12.
J Pharmacol Exp Ther ; 374(1): 151-160, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345621

RESUMO

We investigated the pharmacokinetic properties of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.6, and 5 mg/kg, i.p.) to pubertal adolescent (37-day-old) and adult (70-day-old) mice. Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma, brain, and white adipose tissue (WAT) using a validated isotope-dilution liquid chromatography/tandem mass spectrometry assay. Δ9-THC (5 mg/kg) reached 50% higher circulating concentration in adolescent mice than in adult mice. A similar age-dependent difference was observed in WAT. Conversely, 40%-60% lower brain concentrations and brain-to-plasma ratios for Δ9-THC and 50%-70% higher brain concentrations for Δ9-THC metabolites were measured in adolescent animals relative to adult animals. Liver microsomes from adolescent mice converted Δ9-THC into 11-COOH-THC twice as fast as adult microsomes. Moreover, the brains of adolescent mice contained higher mRNA levels of the multidrug transporter breast cancer resistance protein, which may extrude Δ9-THC from the brain, and higher mRNA levels of claudin-5, a protein that contributes to blood-brain barrier integrity. Finally, administration of Δ9-THC (5 mg/kg) reduced spontaneous locomotor activity in adult, but not adolescent, animals. The results reveal the existence of multiple differences in the distribution and metabolism of Δ9-THC between adolescent and adult male mice, which might influence the pharmacological response to the drug. SIGNIFICANCE STATEMENT: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes persistent changes in brain function. These studies generally overlook the impact that age-dependent changes in the distribution and metabolism of the drug might exert on its pharmacological effects. This report provides a comparative analysis of the pharmacokinetic properties of Δ9-THC in adolescent and adult male mice and outlines multiple functionally significant dissimilarities in the distribution and metabolism of Δ9-THC between these two age groups.


Assuntos
Dronabinol/farmacocinética , Transportadores de Cassetes de Ligação de ATP/genética , Envelhecimento/metabolismo , Animais , Claudina-5/genética , Dronabinol/sangue , Regulação da Expressão Gênica , Masculino , Camundongos , RNA Mensageiro/genética , Distribuição Tecidual
13.
Clin Chem ; 66(7): 888-914, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628766

RESUMO

BACKGROUND: Cannabinoid analyses generally included, until recently, the primary psychoactive cannabis compound, Δ9-tetrahydrocannabinol (THC), and/or its inactive metabolite, 11-nor-9-carboxy-THC, in blood, plasma, and urine. Technological advances revolutionized the analyses of major and minor phytocannabinoids in diverse biological fluids and tissues. An extensive literature search was conducted in PubMed for articles on cannabinoid analyses from 2000 through 2019. References in acquired manuscripts were also searched for additional articles. CONTENT: This article summarizes analytical methodologies for identification and quantification of multiple phytocannabinoids (including THC, cannabidiol, cannabigerol, and cannabichromene) and their precursors and/or metabolites in blood, plasma, serum, urine, oral fluid, hair, breath, sweat, dried blood spots, postmortem matrices, breast milk, meconium, and umbilical cord since the year 2000. Tables of nearly 200 studies outline parameters including analytes, specimen volume, instrumentation, and limits of quantification. Important diagnostic and interpretative challenges of cannabinoid analyses are also described. Medicalization and legalization of cannabis and the 2018 Agricultural Improvement Act increased demand for cannabinoid analyses for therapeutic drug monitoring, emergency toxicology, workplace and pain-management drug testing programs, and clinical and forensic toxicology applications. This demand is expected to intensify in the near future, with advances in instrumentation performance, increasing LC-MS/MS availability in clinical and forensic toxicology laboratories, and the ever-expanding knowledge of the potential therapeutic use and toxicity of phytocannabinoids. SUMMARY: Cannabinoid analyses and data interpretation are complex; however, major and minor phytocannabinoid detection windows and expected concentration ranges in diverse biological matrices improve the interpretation of cannabinoid test results.


Assuntos
Canabinoides/análise , Testes Respiratórios , Cannabis/química , Cromatografia Líquida , Toxicologia Forense , Cabelo/química , Análise do Cabelo , Humanos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem
14.
Br J Clin Pharmacol ; 86(3): 611-619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31747464

RESUMO

AIMS: Population pharmacokinetic models of Δ9-tetrahydrocannabinol (THC) have been developed for THC plasma and blood concentration data. Often, only the metabolites of THC are measurable when blood samples are obtained. Therefore, we performed a population pharmacokinetic analysis of THC, 11-OH-THC and THCCOOH plasma concentration data from a Phase I clinical trial of THC smoking. METHODS: Frequently obtained plasma THC, 11-OH-THC and THCCOOH concentration data were obtained over 168 h from 6 subjects who smoked low (15.8 mg) and high dose (33.8 mg) THC cigarettes on 2 occasions. Bayesian estimates of the THC pharmacokinetic model from each individual for each dose were fixed prior to the sequential pharmacokinetic analysis of the metabolites. RESULTS: A 3-compartment model of THC was developed that has a steady-state volume of distribution (VdSS ) of 3401 ± 788 L and a clearance of 0.72 ± 0.10 L/min. 11-OH-THC was characterized by 50 ± 6% of the THC being directly cleared to a 3-compartment model with a VdSS of 415.2 ± 4.3 L and clearance of 0.78 ± 0.05 L/min. The THCCOOH model shared the central compartment of the 11-OH-THC model with a VdSS of 29.1 ± 0.05 L and a clearance of 0.12 ± 0.02 L/min. First order kinetics were observed for THC and THCCOOH between the low and high doses, but a nonlinear pattern was observed for 11-OH-THC. CONCLUSION: We describe the pharmacokinetics of THC, 11-OH-THC and THCCOOH including inter- and intraindividual variability of the parameter estimates of the model.


Assuntos
Cannabis , Fumar Maconha , Teorema de Bayes , Dronabinol , Humanos , Fumar
15.
Ther Drug Monit ; 42(2): 194-204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32195988

RESUMO

PURPOSE: Drug use during pregnancy is a critical global challenge, capable of severe impacts on neonatal development. However, the consumption of cannabis and synthetic cannabinoids is on the rise in pregnant women. Obstetric complications with increased risks of miscarriage, fetal growth restriction, and brain development impairment have been associated with perinatal cannabis exposure, but data on synthetic cannabinoid use during pregnancy are limited. METHODS: We reviewed studies that investigated the risks associated with cannabis and synthetic cannabinoid use and those that reported the concentrations of cannabinoids and synthetic cannabinoids in maternal (breast milk) and neonatal (placenta, umbilical cord, meconium, and hair) matrices during human pregnancy. A MEDLINE and EMBASE literature search to identify all relevant articles published in English from January 1998 to April 2019 was performed. RESULTS: Cannabis use during pregnancy is associated with increased risks of adverse obstetrical outcomes, although neurobehavioral effects are still unclear. Analyses of cannabinoids in meconium are well documented, but further research on other unconventional matrices is needed. Adverse effects due to perinatal synthetic cannabinoid exposure are still unknown, and analytical data are scarce. CONCLUSIONS: Awareness of the hazards of drug use during pregnancy should be improved to encourage health care providers to urge pregnant women to abstain from cannabis and, if cannabis-dependent, seek treatment. Moreover, substances used throughout pregnancy should be monitored as a deterrent to cannabis use, and potential cannabis-dependent women should be identified, so as to limit cannabis-fetal exposure during gestation, and provided appropriate treatment.


Assuntos
Canabinoides/farmacocinética , Cannabis , Monitoramento de Medicamentos/métodos , Abuso de Maconha/metabolismo , Complicações na Gravidez/metabolismo , Canabinoides/efeitos adversos , Feminino , Cabelo/química , Humanos , Abuso de Maconha/complicações , Abuso de Maconha/epidemiologia , Mecônio/química , Leite Humano/química , Placenta/química , Gravidez , Complicações na Gravidez/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prevalência , Fatores de Risco , Cordão Umbilical/química
16.
Ther Drug Monit ; 42(2): 205-221, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31809406

RESUMO

BACKGROUND: The prevalence of drug use during pregnancy continues to increase despite the associated serious adverse obstetrical outcomes, including increased risk of miscarriage, fetal growth restriction, brain development impairment, neonatal abstinence syndrome, preterm delivery, and stillbirths. Monitoring drug use during pregnancy is crucial to limit prenatal exposure and provide suitable obstetrical health care. The authors reviewed published literature reporting the concentrations of common drugs of abuse and new psychoactive substances (NPS), such as synthetic cathinones and synthetic opioids, NPS, and their metabolites using unconventional matrices to identify drug use during pregnancy and improve data interpretation. METHODS: A literature search was performed from 2010 to July 2019 using PubMed, Scopus, Web of Science scientific databases, and reports from international institutions to review recently published articles on heroin, cocaine, amphetamine, methamphetamine, synthetic cathinone, and synthetic opioid monitoring during pregnancy. RESULTS: Meconium has been tested for decades to document prenatal exposure to drugs, but data regarding drug concentrations in amniotic fluid, the placenta, the umbilical cord, and neonatal hair are still lacking. Data on prenatal exposure to NPS are limited. CONCLUSIONS: Maternal hair testing is the most sensitive alternative matrix for identifying drug use during pregnancy, while drug concentrations in the meconium, placenta, and umbilical cord offer the identification of prenatal drug exposure at birth. Adverse developmental outcomes for the infant make it critical to promptly identify maternal drug use to limit fetal exposure or, if determined at birth, to provide resources to the exposed child and family. Alternative matrices offer choices for monitoring and challenge laboratories to deliver highly sensitive and specific analytical methods for detection.


Assuntos
Monitoramento de Medicamentos/métodos , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Alcaloides/farmacocinética , Anfetaminas/farmacocinética , Analgésicos Opioides/farmacocinética , Cocaína/farmacocinética , Feminino , Cabelo/química , Heroína/farmacocinética , Humanos , Mecônio/química , Placenta/química , Gravidez , Complicações na Gravidez/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Cordão Umbilical/química
17.
Ther Drug Monit ; 42(2): 181-193, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31425444

RESUMO

PURPOSE: Buprenorphine and methadone are international gold standards for managing opioid use disorders. Although they are efficacious in treating opioid dependence, buprenorphine and methadone present risks, especially during pregnancy, causing neonatal abstinence syndrome and adverse obstetrical outcomes. Buprenorphine and methadone are also abused during pregnancy, and identifying their use is important to limit unprescribed prenatal exposure. Previous studies have suggested that concentrations of buprenorphine, but not methadone markers in unconventional matrices may predict child outcomes, although currently only limited data exist. We reviewed the literature on concentrations of buprenorphine, methadone, and their metabolites in unconventional matrices to improve data interpretation. METHODS: A literature search was conducted using scientific databases (PubMed, Scopus, Web of Science, and reports from international institutions) to review published articles on buprenorphine and methadone monitoring during pregnancy. RESULTS: Buprenorphine and methadone and their metabolites were quantified in the meconium, umbilical cord, placenta, and maternal and neonatal hair. Methadone concentrations in the meconium and hair were typically higher than those in other matrices, although the concentrations in the placenta and umbilical cord were more suitable for predicting neonatal outcomes. Buprenorphine concentrations were lower and required sensitive instrumentation, as measuring buprenorphine glucuronidated metabolites is critical to predict neonatal outcomes. CONCLUSIONS: Unconventional matrices are good alternatives to conventional ones for monitoring drug exposure during pregnancy. However, data are currently scarce on buprenorphine and methadone during pregnancy to accurately interpret their concentrations. Clinical studies should be conducted with larger cohorts, considering confounding factors such as illicit drug co-exposure.


Assuntos
Analgésicos Opioides/farmacocinética , Buprenorfina/farmacocinética , Monitoramento de Medicamentos/métodos , Metadona/farmacocinética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Buprenorfina/uso terapêutico , Feminino , Cabelo/química , Humanos , Mecônio/química , Metadona/uso terapêutico , Tratamento de Substituição de Opiáceos/métodos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Gravidez , Cordão Umbilical/química
18.
Clin Chem Lab Med ; 58(5): 682-689, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30956228

RESUMO

Background "Light cannabis" is a product legally sold in Europe with Δ9-tetrahydrocannabinol (THC) concentration lower than 0.2% and variable cannabidiol (CBD) content. We studied THC and CBD excretion profiles in blood, oral fluid (OF) and urine after smoking one or four light cannabis cigarettes. Methods Blood, OF and urine samples were obtained from six healthy light cannabis consumers after smoking one 1 g cigarette containing 0.16% THC and 5.8% CBD and from six others after smoking four 1 g cigarettes within 4 h. Sample collection began 0.5 and 4.5 h after smoking one or four cigarettes, respectively. Cannabinoid concentrations were quantified by gas chromatography-mass spectrometry (GC-MS). Results At the first collection, the highest THC and CBD concentrations occurred in blood (THC 7.0-10.8 ng/mL; CBD 30.2-56.1 ng/mL) and OF (THC 5.1-15.5 ng/mL; CBD 14.2-28.1 ng/mL); similar results occurred 0.5 h after the last of four cigarettes in blood (THC 14.1-18.2 ng/mL, and CBD 25.6-45.4 ng/mL) and OF (THC 11.2-24.3 ng/mL; CBD 14.4-37.0 ng/mL). The mean OF to blood ratio ranged from 0.6 to 1.2 after one and 0.6 to 1.9 after four light cannabis cigarettes. THC/CBD ratios in blood and OF were never greater than 2. Urinary 11-nor-9-carboxy-THC concentrations peaked 8 h after one and four cigarettes. Conclusions OF was a valuable alternative to blood in monitoring consumption of light cannabis. Blood and OF THC/CBD concentration ratios, never exceeded 2, possibly providing a useful biomarker to identify light cannabis vs illegal higher THC cannabis use, where THC/CBD ratios are generally greater than 10.


Assuntos
Canabidiol/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Saliva/química , Adulto , Comportamento/fisiologia , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/urina , Canabidiol/sangue , Canabidiol/farmacocinética , Canabidiol/urina , Dronabinol/sangue , Dronabinol/farmacocinética , Dronabinol/urina , Feminino , Humanos , Masculino , Fumar Maconha , Pessoa de Meia-Idade , Saliva/metabolismo , Fatores de Tempo , Adulto Jovem
19.
Clin Chem Lab Med ; 58(5): 673-681, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-31527291

RESUMO

Background The widespread availability of cannabis raises concerns regarding its effect on driving performance and operation of complex equipment. Currently, there are no established safe driving limits regarding ∆9-tetrahydrocannabinol (THC) concentrations in blood or breath. Daily cannabis users build up a large body burden of THC with residual excretion for days or weeks after the start of abstinence. Therefore, it is critical to have a sensitive and specific analytical assay that quantifies THC, the main psychoactive component of cannabis, and multiple metabolites to improve interpretation of cannabinoids in blood; some analytes may indicate recent use. Methods A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to quantify THC, cannabinol (CBN), cannabidiol (CBD), 11-hydroxy-THC (11-OH-THC), (±)-11-nor-9-carboxy-Δ9-THC (THCCOOH), (+)-11-nor-Δ9-THC-9-carboxylic acid glucuronide (THCCOOH-gluc), cannabigerol (CBG), and tetrahydrocannabivarin (THCV) in whole blood (WB). WB samples were prepared by solid-phase extraction (SPE) and quantified by LC-MS/MS. A rapid and simple method involving methanol elution of THC in breath collected in SensAbues® devices was optimized. Results Lower limits of quantification ranged from 0.5 to 2 µg/L in WB. An LLOQ of 80 pg/pad was achieved for THC concentrations in breath. Calibration curves were linear (R2>0.995) with calibrator concentrations within ±15% of their target and quality control (QC) bias and imprecision ≤15%. No major matrix effects or drug interferences were observed. Conclusions The methods were robust and adequately quantified cannabinoids in biological blood and breath samples. These methods will be used to identify cannabinoid concentrations in an upcoming study of the effects of cannabis on driving.


Assuntos
Canabinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Testes Respiratórios , Canabidiol/análise , Canabidiol/sangue , Canabidiol/isolamento & purificação , Canabidiol/normas , Canabinoides/sangue , Canabinoides/isolamento & purificação , Canabinoides/normas , Cromatografia Líquida de Alta Pressão/normas , Ácido Cítrico/química , Dronabinol/análise , Dronabinol/sangue , Dronabinol/isolamento & purificação , Dronabinol/normas , Glucose/análogos & derivados , Glucose/química , Humanos , Limite de Detecção , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Fumar , Extração em Fase Sólida , Espectrometria de Massas em Tandem/normas , Estudos de Validação como Assunto
20.
Int J Behav Med ; 27(3): 343-356, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291618

RESUMO

BACKGROUND: The study examined the association between prenatal tobacco or co-exposure to tobacco and cannabis and children's cortisol reactivity at kindergarten age and the role of child sex, maternal negative mood (depression/perceived stress), and parenting behavior during play interactions as moderators of this association. METHODS: The sample was 238 mother-child dyads (67 tobacco users, 83 co-users of tobacco and cannabis, and 88 non-users). Data used were obtained from pregnancy assessments and six postnatal assessments at 2, 9, 16, 24, and 36 months and kindergarten age. Infant cortisol was measured in response to two laboratory stress paradigms. RESULTS: Co-exposed children had a significantly greater decrease from pre-stressor to post-stressor and overall lower cortisol response compared with non-exposed children. This association was moderated by maternal harshness during play interactions across early childhood. Co-exposed children had flatter cortisol responses regardless of the mother's level of harshness or stress/depression. However, non-exposed children who experienced low harshness had the normative cortisol peak 20 min post-stressor, while non-exposed children with high maternal harshness had a flatter cortisol pattern. Similarly, non-exposed children with more depressed/stressed mothers had higher pre-stressor cortisol levels, while those who experienced low maternal depression/stress had lower pre-stressor cortisol but peaked post-stress. CONCLUSIONS: Results suggest that prenatal polysubstance exposure is associated with greater risk for lower cortisol response in children and highlight the role of parenting behavior for non-exposed but not the co-exposed children.


Assuntos
Hidrocortisona/metabolismo , Uso da Maconha/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Uso de Tabaco/epidemiologia , Adulto , Afeto , Pré-Escolar , Depressão/epidemiologia , Feminino , Humanos , Lactente , Masculino , Mães , Poder Familiar , Gravidez , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA