Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298211

RESUMO

The accumulation of tau is a hallmark of several neurodegenerative diseases and is associated with neuronal hypoactivity and presynaptic dysfunction. Oral administration of the adenosine A1 receptor antagonist rolofylline (KW-3902) has previously been shown to reverse spatial memory deficits and to normalize the basic synaptic transmission in a mouse line expressing full-length pro-aggregant tau (TauΔK) at low levels, with late onset of disease. However, the efficacy of treatment remained to be explored for cases of more aggressive tauopathy. Using a combination of behavioral assays, imaging with several PET-tracers, and analysis of brain tissue, we compared the curative reversal of tau pathology by blocking adenosine A1 receptors in three mouse models expressing different types and levels of tau and tau mutants. We show through positron emission tomography using the tracer [18F]CPFPX (a selective A1 receptor ligand) that intravenous injection of rolofylline effectively blocks A1 receptors in the brain. Moreover, when administered to TauΔK mice, rolofylline can reverse tau pathology and synaptic decay. The beneficial effects are also observed in a line with more aggressive tau pathology, expressing the amyloidogenic repeat domain of tau (TauRDΔK) with higher aggregation propensity. Both models develop a progressive tau pathology with missorting, phosphorylation, accumulation of tau, loss of synapses, and cognitive decline. TauRDΔK causes pronounced neurofibrillary tangle assembly concomitant with neuronal death, whereas TauΔK accumulates only to tau pretangles without overt neuronal loss. A third model tested, the rTg4510 line, has a high expression of mutant TauP301L and hence a very aggressive phenotype starting at ~3 months of age. This line failed to reverse pathology upon rolofylline treatment, consistent with a higher accumulation of tau-specific PET tracers and inflammation. In conclusion, blocking adenosine A1 receptors by rolofylline can reverse pathology if the pathological potential of tau remains below a threshold value that depends on concentration and aggregation propensity.


Assuntos
Receptor A1 de Adenosina , Tauopatias , Camundongos , Animais , Camundongos Transgênicos , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Hipocampo/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/genética , Tauopatias/metabolismo , Cognição , Modelos Animais de Doenças
2.
Hum Mol Genet ; 26(16): 3144-3160, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28541476

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease with motor, cognitive and psychiatric impairment. Dysfunctions in HD models have been related to reduced levels of striatal brain-derived neurotrophic factor (BDNF) and imbalance between its receptors TrkB and p75(NTR). Thus, molecules with activity on the BDNF/TrkB/p75 system can have therapeutic potential. 7,8-Dihydroxyflavone (7,8-DHF) was described as a TrkB agonist in several models of neuro-degenerative diseases, however, its TrkB activation profile needs further investigation due to its pleiotropic properties and divergence from BDNF effect. To investigate this, we used in vitro and in vivo models of HD to dissect TrkB activation upon 7,8-DHF treatment. 7,8-DHF treatment in primary cultures showed phosphorylation of TrkBY816 but not TrkBY515 with activation of the PLCγ1 pathway leading to morphological and functional improvements. Chronic administration of 7,8-DHF delayed motor deficits in R6/1 mice and reversed deficits on the Novel Object Recognition Test (NORT) at 17 weeks. Morphological and biochemical analyses revealed improved striatal levels of enkephalin, and prevention of striatal volume loss. We found a TrkBY816 but not TrkBY515 phosphorylation recovery in striatum concordant with in vitro results. Additionally, 7,8-DHF normalized striatal levels of induced and neuronal nitric oxide synthase (iNOS and nNOS, respectively) and ameliorated the imbalance of p75/TrkB. Our results provide new insights into the mechanism of action of 7,8-DHF suggesting that its effect through the TrkB receptor in striatum is via selective phosphorylation of its Y816 residue and activation of PLCγ1 pathway, but pleiotropic effects of the drug also contribute to its therapeutic potential.


Assuntos
Flavonas/metabolismo , Flavonas/uso terapêutico , Doença de Huntington/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Flavonas/farmacologia , Hipocampo/metabolismo , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Fosfolipase C gama/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Fosforilação , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 113(41): 11597-11602, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671637

RESUMO

Accumulation of Tau is a characteristic hallmark of several neurodegenerative diseases but the mode of toxic action of Tau is poorly understood. Here, we show that the Tau protein is toxic due to its aggregation propensity, whereas phosphorylation and/or missorting is not sufficient to cause neuronal dysfunction. Aggregate-prone Tau accumulates, when expressed in vitro at near-endogenous levels, in axons as spindle-shaped grains. These axonal grains contain Tau that is folded in a pathological (MC-1) conformation. Proaggregant Tau induces a reduction of neuronal ATP, concomitant with loss of dendritic spines. Counterintuitively, axonal grains of Tau are not targeted for degradation and do not induce a molecular stress response. Proaggregant Tau causes neuronal and astrocytic hypoactivity and presynaptic dysfunction instead. Here, we show that the adenosine A1 receptor antagonist rolofylline (KW-3902) is alleviating the presynaptic dysfunction and restores neuronal activity as well as dendritic spine levels in vitro. Oral administration of rolofylline for 2-wk to 14-mo-old proaggregant Tau transgenic mice restores the spatial memory deficits and normalizes the basic synaptic transmission. These findings make rolofylline an interesting candidate to combat the hypometabolism and neuronal dysfunction associated with Tau-induced neurodegenerative diseases.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Axônios/metabolismo , Deleção de Sequência , Xantinas/farmacologia , Proteínas tau/genética , Trifosfato de Adenosina/metabolismo , Animais , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tauopatias/tratamento farmacológico , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia
4.
Biochim Biophys Acta ; 1862(7): 1255-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063456

RESUMO

Huntington's disease (HD) is characterized by motor dysfunction due to the expression of mutant huntingtin that promotes degeneration of striatal GABAergic medium-sized spiny neurons. Here we explore the role of the 90-kDa ribosomal S6 kinase (Rsk) in the physiopathology of HD. First, we show a reduction of Rsk1 and 2 protein levels in the striatum of two HD mouse models, R6/1 and Hdh(Q7/Q111) knock-in mice, at ages when they suffer from motor disturbances. Interestingly, the analysis of post-mortem samples from HD patients revealed a significant reduction of both Rsk forms in the putamen and caudate, but not in the cortex. Rsk1 and 2 levels were also reduced in the striatum of BDNF heterozygous mice, and upon BDNF neutralization in striatal cultures, suggesting that striatal loss of BDNF could be involved in the decrease of Rsk levels. Finally, we injected recombinant adeno-associated-virus (AAV5)-Rsk in the striatum of R6/1 mice at the onset of motor symptoms. Four weeks later, we found higher Rsk levels in the striatum accompanied by improvements in motor coordination, enhanced expression of synaptic markers and increased expression of genes related to synaptic plasticity, such as cfos and egr1. Altogether, we identified Rsk as a key factor in striatal alterations associated with motor deficits in HD.


Assuntos
Regulação para Baixo , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Mutação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Ativação Transcricional
5.
Neurobiol Dis ; 95: 22-34, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369879

RESUMO

Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. Deficits in hippocampal synaptic plasticity have been involved in the HD memory impairment. Several studies show that prostaglandin E2 (PGE2) EP2 receptor stimulates synaptic plasticity and memory formation. However, this role was not explored in neurodegenerative diseases. Here, we investigated the capacity of PGE2 EP2 receptor to promote synaptic plasticity and memory improvements in a model of HD, the R6/1 mice, by administration of the agonist misoprostol. We found that misoprostol increases dendritic branching in cultured hippocampal neurons in a brain-derived neurotrophic factor (BDNF)-dependent manner. Then, we implanted an osmotic mini-pump system to chronically administrate misoprostol to R6/1 mice from 14 to 18weeks of age. We observed that misoprostol treatment ameliorates the R6/1 long-term memory deficits as analyzed by the T-maze spontaneous alternation task and the novel object recognition test. Importantly, administration of misoprostol promoted the expression of hippocampal BDNF. Moreover, the treatment with misoprostol in R6/1 mice blocked the reduction in the number of PSD-95 and VGluT-1 positive particles observed in hippocampus of vehicle-R6/1 mice. In addition, we observed an increase of cAMP levels in the dentate ` of WT and R6/1 mice treated with misoprostol. Accordingly, we showed a reduction in the number of mutant huntingtin nuclear inclusions in the dentate gyrus of R6/1 mice. Altogether, these results suggest a putative therapeutic effect of PGE2 EP2 receptor in reducing cognitive deficits in HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Huntington/fisiopatologia , Transtornos da Memória/fisiopatologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Animais , Transtornos Cognitivos/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Transtornos da Memória/tratamento farmacológico , Camundongos Transgênicos
6.
Biochim Biophys Acta ; 1832(8): 1241-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23507144

RESUMO

The role of peroxisome proliferator activator receptor (PPAR)ß/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARß/δ agonists. Here we evaluated the effects of PPARß/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARß/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in ß-amyloid (Aß) synthesis and deposition, the ß site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARß/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARß/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARß/δ(-/-) mice. Collectively, our findings indicate that PPARß/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Córtex Cerebral/metabolismo , PPAR beta/deficiência , Receptores Imunológicos/metabolismo , Proteínas tau/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Cognição/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Glial Fibrilar Ácida , Inflamação , Interleucina-6/genética , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Fosforilação , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Proteínas tau/genética
7.
Exp Neurol ; 372: 114632, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38052272

RESUMO

In a previous study, regional reductions in cerebral glucose metabolism have been demonstrated in the tauopathy mouse model rTg4510 (Endepols et al., 2022). Notably, glucose hypometabolism was present in some brain regions without co-localized synaptic degeneration measured with [18F]UCB-H. We hypothesized that in those regions hypometabolism may reflect reduced functional connectivity rather than synaptic damage. To test this hypothesis, we performed seed-based metabolic connectivity analyses using [18F]FDG-PET data in this mouse model. Eight rTg4510 mice at the age of seven months and 8 non-transgenic littermates were injected intraperitoneally with 11.1 ± 0.8 MBq [18F]FDG and spent a 35-min uptake period awake in single cages. Subsequently, they were anesthetized and measured in a small animal PET scanner for 30 min. Three seed-based connectivity analyses were performed per group. Seeds were selected for apparent mismatch between [18F]FDG and [18F]UCB-H. A seed was placed either in the medial orbitofrontal cortex, dorsal hippocampus or dorsal thalamus, and correlated with all other voxels of the brain across animals. In the control group, the emerging correlative pattern was strongly overlapping for all three seed locations, indicating a uniform fronto-thalamo-hippocampal resting state network. In contrast, rTg4510 mice showed three distinct networks with minimal overlap. Frontal and thalamic networks were greatly diminished. The hippocampus, however, formed a new network with the whole parietal cortex. We conclude that resting-state functional networks are fragmented in the brain of rTg4510 mice. Thus, hypometabolism can be explained by reduced functional connectivity of brain areas devoid of tau-related pathology, such as the thalamus.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Fluordesoxiglucose F18/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Mapeamento Encefálico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética
8.
J Mol Neurosci ; 73(9-10): 693-712, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606769

RESUMO

The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology. To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes. Pro- and anti-aggregant mice had comparable low transgene expression (~0.2 times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, respectively, increased the human Tau expression to ~0.65 times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis. Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding and does not lead to templated misfolding in recipient neurons.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Tauopatias/metabolismo , Gliose , Hipocampo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
9.
J Neurochem ; 121(4): 639-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22372926

RESUMO

The transcription factor Elk-1 has been revealed as neuroprotective against toxic stimuli. In this study, we explored the neuroprotective capacity of Elk-1 in Huntington's disease. To this aim, we used two exon-1 mutant huntingtin (mhtt) mouse models (R6/1 and R6/2), and a full-length mhtt striatal cell model (STHdh(Q111/Q111) ). Analysis of Elk-1 and pElk-1(Ser383) in the striatum of R6 mice revealed increased levels during the disease progression. Similarly, Elk-1 and pElk-1(Ser383) levels were increased in STHdh(Q111/Q111) cells when compared with wild-type cells. In addition, we observed a predominant nuclear localization of Elk-1 in STHdh(Q111/Q111) cells, and in the striatum of 30-week-old R6/1 mice. Nuclear Elk-1 did not colocalize with mhtt aggregates, suggesting a higher transcriptional activity. In agreement, the knock-down of Elk-1 decreased immediate early genes expression in STHdh(Q111/Q111) cells, but not in wild-type cells. Interestingly, reduction of Elk-1 levels by siRNAs transfection promoted cell death and caspase 3 cleavage in STHdh(Q111/Q111) cells, but not in wild-type cells. In summary, we propose that increased protein levels, phosphorylation and nuclear localization of Elk-1 observed in exon-1 and full-length Huntington's disease models could be a compensatory mechanism activated by striatal cells in response to the presence of mhtt that contributes to neuroprotection.


Assuntos
Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Apoptose/fisiologia , Biotransformação/fisiologia , Western Blotting , Núcleo Celular/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Citosol/metabolismo , Progressão da Doença , Proteína 2 de Resposta de Crescimento Precoce/genética , Genes fos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Mutação/fisiologia , Fosforilação , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Frações Subcelulares/metabolismo , Transfecção
10.
Mol Neurobiol ; 59(6): 3402-3413, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35312967

RESUMO

Cerebral glucose hypometabolism is a typical hallmark of Alzheimer's disease (AD), usually associated with ongoing neurodegeneration and neuronal dysfunction. However, underlying pathological processes are not fully understood and reproducibility in animal models is not well established. The aim of the present study was to investigate the regional interrelation of glucose hypometabolism measured by [18F]FDG positron emission tomography (PET) with various molecular targets of AD pathophysiology using the PET tracers [18F]PI-2620 for tau deposition, [18F]DPA-714 for TSPO expression associated with neuroinflammation, and [18F]UCB-H for synaptic density in a transgenic tauopathy mouse model. Seven-month-old rTg4510 mice (n = 8) and non-transgenic littermates (n = 8) were examined in a small animal PET scanner with the tracers listed above. Hypometabolism was observed throughout the forebrain of rTg4510 mice. Tau pathology, increased TSPO expression, and synaptic loss were co-localized in the cortex and hippocampus and correlated with hypometabolism. In the thalamus, however, hypometabolism occurred in the absence of tau-related pathology. Thus, cerebral hypometabolism was associated with two regionally distinct forms of molecular pathology: (1) characteristic neuropathology of the Alzheimer-type including synaptic degeneration and neuroinflammation co-localized with tau deposition in the cerebral cortex, and (2) pathological changes in the thalamus in the absence of other markers of AD pathophysiology, possibly reflecting downstream or remote adaptive processes which may affect functional connectivity. Our study demonstrates the feasibility of a multitracer approach to explore complex interactions of distinct AD-pathomechanisms in vivo in a small animal model. The observations demonstrate that multiple, spatially heterogeneous pathomechanisms can contribute to hypometabolism observed in AD mouse models and they motivate future longitudinal studies as well as the investigation of possibly comparable pathomechanisms in human patients.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Glucose , Humanos , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Reprodutibilidade dos Testes , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Proteínas tau/metabolismo
11.
Alzheimers Dement (N Y) ; 7(1): e12170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095439

RESUMO

BACKGROUND: One of the major hallmarks of Alzheimer's disease (AD)is the aberrant modification and aggregation of the microtubule-associated protein Tau . The extent of Tau pathology correlates with cognitive decline, strongly implicating Tau in the pathogenesis of the disease. Because the inhibition of Tau aggregation may be a promising therapeutic target, we tested the efficacy of BSc3094, an inhibitor of Tau aggregation, in reducing Tau pathology and ameliorating the disease symptoms in transgenic mice. METHODS: Mice expressing human Tau with the P301L mutation (line rTg4510) were infused with BSc3094 into the lateral ventricle using Alzet osmotic pumps connected to a cannula that was placed on the skull of the mice, thus bypassing the blood-brain barrier (BBB) . The drug treatment lasted for 2 months, and the effect of BSc3094 on cognition and on reversing hallmarks of Tau pathology was assessed. RESULTS: BSc3094 significantly reduced the levels of Tau phosphorylation and sarkosyl-insoluble Tau. In addition, the drug improved cognition in different behavioral tasks and reduced anxiety-like behavior in the transgenic mice used in the study. CONCLUSIONS: Our in vivo investigations demonstrated that BSc3094 is capable of partially reducing the pathological hallmarks typically observed in Tau transgenic mice, highlighting BSc3094 as a promising compound for a future therapeutic approach for AD.

12.
J Clin Med ; 10(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34682839

RESUMO

(1) Background: Catheter-directed therapies (CDT) may be considered for selected patients with pulmonary embolism (PE); (2) Methods: Retrospective observational study including all consecutive patients with acute PE undergoing CDT (mechanical or pharmacomechanical) from January 2010 through December 2020. The aim was to evaluate in-hospital and long-term mortality and its predictive factors; (3) Results: We included 63 patients, 43 (68.3%) with high-risk PE. All patients underwent mechanical CDT and, additionally, 27 (43%) underwent catheter-directed thrombolysis. Twelve (19%) patients received failed systemic thrombolysis (ST) prior to CDT, and an inferior vena cava (IVC) filter was inserted in 28 (44.5%) patients. In-hospital PE-related and all-cause mortality rates were 31.7%; 95% CI 20.6-44.7% and 42.9%; 95% CI 30.5-56%, respectively. In multivariate analysis, age > 70 years and previous ST were strongly associated with PE-related and all-cause mortality, while IVC filter insertion during the CDT was associated with lower mortality rates. After a median follow-up of 40 (12-60) months, 11 more patients died (mortality rate of 60.3%; 95% CI 47.2-72.4%). Long-term survival was significantly higher in patients who received an IVC filter; (4) Conclusions: Age > 70 years and failure of previous ST were associated with mortality in acute PE patients treated with CDT. In-hospital and long-term mortality were lower in patients who received IVC filter insertion.

13.
Cell Death Dis ; 12(6): 616, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131105

RESUMO

RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death. Its downregulation in Parkinson's and Huntington's disease models ameliorates the pathological phenotypes. In the context of Alzheimer's disease (AD), the coding gene for RTP801, DDIT4, is responsive to Aß and modulates its cytotoxicity in vitro. Also, RTP801 mRNA levels are increased in AD patients' lymphocytes. However, the involvement of RTP801 in the pathophysiology of AD has not been yet tested. Here, we demonstrate that RTP801 levels are increased in postmortem hippocampal samples from AD patients. Interestingly, RTP801 protein levels correlated with both Braak and Thal stages of the disease and with GFAP expression. RTP801 levels are also upregulated in hippocampal synaptosomal fractions obtained from murine 5xFAD and rTg4510 mice models of the disease. A local RTP801 knockdown in the 5xFAD hippocampal neurons with shRNA-containing AAV particles ameliorates cognitive deficits in 7-month-old animals. Upon RTP801 silencing in the 5xFAD mice, no major changes were detected in hippocampal synaptic markers or spine density. Importantly, we found an unanticipated recovery of several gliosis hallmarks and inflammasome key proteins upon neuronal RTP801 downregulation in the 5xFAD mice. Altogether our results suggest that RTP801 could be a potential future target for theranostic studies since it could be a biomarker of neuroinflammation and neurotoxicity severity of the disease and, at the same time, a promising therapeutic target in the treatment of AD.


Assuntos
Doença de Alzheimer/genética , Encefalite/genética , Transtornos da Memória/genética , Fatores de Transcrição/fisiologia , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/patologia , Feminino , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neuroimunomodulação/genética , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Índice de Gravidade de Doença
14.
Digit Med ; 6(2): 53-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35663234

RESUMO

On March 12, 2020, with more than 20,000 confirmed cases and almost 1000 deaths in the European Region, the World Health Organization classified the COVID-19 outbreak as a pandemic. As of August 15, 2020, there are 21.5 million confirmed cases of COVID-19 and over 766,000 deaths from the virus, worldwide. Most governments have imposed quarantine measures of varied degrees of strictness on their populations in attempts to stall the spread of the infection in their communities. However, the isolation may have inflicted long-term psychological injury to the general population and, in particular, to at-risk groups such as the elderly, the mentally ill, children, and frontline healthcare staff. In this article, we offer the most up-to-date review of the effects of COVID-19 confinement on all the disorders listed in the Diagnostic and Statistical Manual of Mental Disorders. We make data-driven predictions of the impact of COVID-19 confinement on mental health outcomes and discuss the potential role of telemedicine and virtual reality in mental health screening, diagnosis, treatment, and monitoring, thus improving the above outcomes in such a difficult time.

15.
PLoS One ; 15(12): e0243533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370304

RESUMO

BACKGROUND: A higher incidence of thrombotic events, mainly pulmonary embolism (PE), has been reported in hospitalized patients with COVID-19. The main objective was to assess clinical and laboratory differences in hospitalized COVID-19 patients according to occurrence of PE. METHODS: This retrospective study included all consecutive patients hospitalized with COVID-19 who underwent a computed tomography (CT) angiography for PE clinical suspicion. Clinical data and median blood test results distributed into weekly periods from COVID-19 symptoms onset, were compared between PE and non-PE patients. RESULTS: Ninety-two patients were included, 29 (32%) had PE. PE patients were younger (63.9 (SD 13.7) vs 69.9 (SD 12.5) years). Clinical symptoms and COVID-19 CT features were similar in both groups. PE was diagnosed after a mean of 20.0 (SD 8.6) days from the onset of COVID-19 symptoms. Corticosteroid boluses were more frequently used in PE patients (62% vs. 43%). No patients met ISTH DIC criteria. Any parameter was statistically significant or clinically relevant except for D-Dimer when comparing both groups. Median values [IQR] of D-dimer in PE vs non-PE patients were: week 2 (2010.7 [770.1-11208.9] vs 626.0 [374.0-2382.2]; p = 0.004); week 3 (3893.1 [1388.2-6694.0] vs 1184.4 [461.8-2447.8]; p = 0.003); and week 4 (2736.3 [1202.1-8514.1] vs 1129.1 [542.5-2834.6]; p = 0.01). Median fold-increase of D-dimer between week 1 and 2 differed between groups (6.64 [3.02-23.05] vs 1.57 [0.64-2.71], p = 0.003); ROC curve AUC was 0.879 (p = 0.003) with a sensitivity and specificity for PE of 86% and 80%, respectively. CONCLUSIONS: Among hospitalized COVID-19 patients, D-dimer levels are higher at weeks 2, 3 and 4 after COVID-19 symptom onset in patients who develop PE. This difference is more pronounced when the fold increase between weeks 1 and 2 is compared.


Assuntos
COVID-19/sangue , COVID-19/diagnóstico , Produtos de Degradação da Fibrina e do Fibrinogênio/administração & dosagem , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico , Idoso , Angiografia por Tomografia Computadorizada , Feminino , Testes Hematológicos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
16.
Mol Neurodegener ; 14(1): 13, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917861

RESUMO

BACKGROUND: Aggregation of tau proteins is a distinct hallmark of tauopathies and has been a focus of research and clinical trials for Alzheimer's Disease. Recent reports have pointed towards a toxic effect of soluble or oligomeric tau in the spreading of tau pathology in Alzheimer's disease. Here we investigated the effects of expressing human tau repeat domain (tauRD) with pro- or anti-aggregant mutations in regulatable transgenic mouse models of Alzheimer's Disease on the functional neuronal networks and the structural connectivity strength. METHODS: Pro-aggregant and anti-aggregant mice were studied when their mutant tauRD was switched on for 12 months to reach the stage where pro-aggregant mice show cognitive impairment, whereas anti-aggregant mice remained cognitively normal. Then, mutant tauRD was switched off by doxycycline treatment for 8 weeks so that soluble transgenic tau disappeared and cognition recovered in the pro-aggregant mice, although some aggregates remained. At these two time points, at baseline after 12 months of mutant tau expression and after 8 weeks of doxycycline treatment, resting state fMRI and diffusion MRI were used to determine functional neuronal networks and fiber connectivities. Results of the transgenic mice were compared with wildtype littermates. RESULTS: Functional connectivity was strongly reduced in transgenic animals during mutant tauRD expression, in relation to WT mice. Interestingly, transgenic mice with the non-aggregant tau mutant showed identical functional deficits as the pro-aggregant mice, even though in this case there was no cognitive decline by behavioral testing. Upon 8 weeks doxycycline treatment and transgene switch-off, functional connectivity in both transgenic groups presented complete normalization of functional connectivity strength, equivalent to the situation in WT littermates. Structural connectivity was found only marginally sensitive to mutant tau expression (both pro- and anti-aggregant tauRD) and by doxycycline treatment. CONCLUSIONS: Our in vivo investigations unravel for the first time a strong reduction of functional neuronal networks by the presence of increased soluble rather than fibrillary tau, independent of its intrinsic propensity of aggregation, which is reversible by switching tau off. Our functional MRI study thus is an unexpected in vivo validation of a novel property of tau, while previous results pointed to a role of aggregation propensity for a pathological state by histopathology and cognitive decline. Our results present further evidence for early tauopathy biomarkers or a potential early stage drug target by functional networks analysis.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Memória/fisiologia , Proteínas tau/metabolismo , Animais , Cognição/fisiologia , Hipocampo/metabolismo , Camundongos , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Sinapses/metabolismo , Tauopatias/metabolismo
17.
Mol Neurodegener ; 12(1): 88, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202785

RESUMO

BACKGROUND: The microtubule-associated protein Tau plays a role in neurodegeneration as well as neurogenesis. Previous work has shown that the expression of the pro-aggregant mutant Tau repeat domain causes strong aggregation and pronounced neuronal loss in the hippocampus whereas the anti-aggregant form has no deleterious effects. These two proteins differ mainly in their propensity to form ß structure and hence to aggregate. METHODS: To elucidate the basis of these contrasting effects, we analyzed organotypic hippocampal slice cultures (OHSCs) from transgenic mice expressing the repeat domain (RD) of Tau with the anti-aggregant mutation (TauRDΔKPP) and compared them with slices containing pro-aggregant TauRDΔK. Transgene expression in the hippocampus was monitored via a sensitive bioluminescence reporter gene assay (luciferase). RESULTS: The expression of the anti-aggregant TauRDΔKPP leads to a larger volume of the hippocampus at a young age due to enhanced neurogenesis, resulting in an increase in neuronal number. There were no signs of activation of microglia and astrocytes, indicating the absence of an inflammatory reaction. Investigation of signaling pathways showed that Wnt-5a was strongly decreased whereas Wnt3 was increased. A pronounced increase in hippocampal stem cell proliferation (seen by BrdU) was observed as early as P8, in the CA regions where neurogenesis is normally not observed. The increase in neurons persisted up to 16 months of age. CONCLUSION: The data suggest that the expression of anti-aggregant TauRDΔKPP enhances hippocampal neurogenesis mediated by the canonical Wnt signaling pathway, without an inflammatory reaction. This study points to a role of tau in brain development and neurogenesis, in contrast to its detrimental role in neurodegeneration at later age.


Assuntos
Neurogênese , Agregação Patológica de Proteínas/fisiopatologia , Proteínas tau/química , Proteínas tau/genética , Motivos de Aminoácidos , Animais , Astrócitos/citologia , Astrócitos/patologia , Hipocampo/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Prolina , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Sequências Repetitivas de Aminoácidos , Tauopatias/fisiopatologia , Proteínas tau/metabolismo
18.
Mol Neurobiol ; 49(2): 784-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24198227

RESUMO

In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/metabolismo , Transtornos da Memória/metabolismo , Transtornos das Habilidades Motoras/metabolismo , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Hidrazinas/administração & dosagem , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Transtornos das Habilidades Motoras/tratamento farmacológico , Transtornos das Habilidades Motoras/genética , Oxazepinas/administração & dosagem , Receptores de Prostaglandina E Subtipo EP1/genética
19.
Mol Neurodegener ; 6: 74, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22041125

RESUMO

BACKGROUND: The 90-kDa ribosomal S6 kinase (Rsk) family is involved in cell survival. Rsk activation is regulated by sequential phosphorylations controlled by extracellular signal-regulated kinase (ERK) 1/2 and 3-phosphoinositide-dependent protein kinase 1 (PDK1). Altered ERK1/2 and PDK1 phosphorylation have been described in Huntington's disease (HD), characterized by the expression of mutant huntingtin (mhtt) and striatal degeneration. However, the role of Rsk in this neurodegenerative disease remains unknown. Here, we analyzed the protein levels, activity and role of Rsk in in vivo and in vitro HD models. RESULTS: We observed increased protein levels of Rsk1 and Rsk2 in the striatum of Hdh(Q111/Q111) and R6/1 mice, STHdh(Q111/Q111) cells and striatal cells transfected with full-length mhtt. Analysis of the phosphorylation of Rsk in Hdh mice and STHdh cells showed reduced levels of phospho Ser-380 (dependent on ERK1/2), whereas phosphorylation at Ser-221 (dependent on PDK1) was increased. Moreover, we found that elevated Rsk activity in STHdh(Q111/Q111) cells was mainly due to PDK1 activity, as assessed by transfection with Rsk mutant constructs. The increase of Rsk in STHdh(Q111/Q111) cells occurred in the cytosol and in the nucleus, which results in enhanced phosphorylation of both cytosolic and nuclear Rsk targets. Finally, pharmacological inhibition of Rsk, knock-down and overexpression experiments indicated that Rsk activity exerts a protective effect against mhtt-induced cell death in STHdh(Q7/Q7) cells transfected with mhtt. CONCLUSION: The increase of Rsk levels and activity would act as a compensatory mechanism with capacity to prevent mhtt-mediated cell death. We propose Rsk as a good target for neuroprotective therapies in HD.


Assuntos
Doença de Huntington/fisiopatologia , Proteínas do Tecido Nervoso/toxicidade , Proteínas Nucleares/toxicidade , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína Huntingtina , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA