Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Bioanal Chem ; 414(17): 4909-4917, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581428

RESUMO

Insects with aquatic life stages can transfer sediment and water pollutants to terrestrial ecosystems, which has been described for metals, polyaromatic hydrocarbons, and polychlorinated chemicals. However, knowledge of the transfer of aquatic micropollutants released by wastewater treatment plants is scarce despite some preliminary studies on their occurrence in riparian spiders. In our study, we address a major analytical gap focusing on the transfer of the micropollutant carbamazepine from the larvae to the adult midges of Chironomus riparius using an optimized QuEChERS extraction method and HPLC-MS/MS applicable to both life stages down to the level of about three individuals. We show that the uptake of carbamazepine by larvae is concentration-dependent and reduces the emergence rate. Importantly, the body burden remained constant in adult midges. Using this information, we estimated the daily exposure of insectivorous tree swallows as terrestrial predators to carbamazepine using the energy demand of the predator and the energy content of the prey. Assuming environmentally relevant water concentrations of about 1 µg/L, the daily dose per kilogram of body weight for tree swallows was estimated to be 0.5 µg/kg/day. At places of high water contamination of 10 µg/L, the exposure may reach 5 µg/kg/day for this micropollutant of medium polarity. Considering body burden changes upon metamorphosis, this study fills the missing link between aquatic contamination and exposure in terrestrial habitats showing that wastewater pollutants can impact birds' life. Clearly, further analytical methods for biota analysis in both habitats are urgently required to improve risk assessment.


Assuntos
Chironomidae , Andorinhas , Poluentes Químicos da Água , Animais , Carbamazepina/análise , Ecossistema , Larva , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise
2.
Anal Bioanal Chem ; 414(6): 2189-2204, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099581

RESUMO

For the analysis of low concentrations of micropollutants in environmental water samples, efficient sample enrichment and cleanup are necessary to reduce matrix effects and to reach low detection limits. For analytes of low and medium polarity, solid-phase extraction is used, but robust methods for the preconcentration of highly polar or ionizable analytes are scarce. In this work, field-step electrophoresis (FSE) was developed as an environmental sample cleanup technique for ionizable micropollutants and ionic transformation products. The FSE electrolyte system preconcentrated 15 acidic model analytes (pKa from -2.2 to 9.1) present in aqueous samples in two fractions by factors of 5-10. Simultaneously, highly mobile matrix compounds were removed including inorganic ions such as sulfate and chloride. The fractions were either directly injected for downstream analysis by reversed-phase liquid chromatography (RPLC) or further processed by evaporative preconcentration with subsequent reconstitution in an organic solvent suitable for separation methods like hydrophilic interaction chromatography. The FSE/RPLC-MS method exhibited high quantitative precision with RSDs of 3-6%. The method was successfully applied to a spiked river water sample and its performance compared with common solid-phase extraction and evaporative concentration, demonstrating a high analyte coverage. FSE combined with non-target screening by RPLC-MS revealed a strong reduction in matrix load especially at low retention times. Seventeen compounds were identified in the FSE fractions sampled at the field step boundary by retention time, accurate mass, and mass fragments. Suspect screening by FSE/RPLC-MS was facilitated by FSE's selectivity for anionic compounds.

3.
J Sep Sci ; 45(5): 1128-1139, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34984811

RESUMO

Thermodynamic acidity constants and limiting ionic mobilities were determined for polyprotic non-chromophore analytes using capillary electrophoresis with capacitively coupled contactless conductivity detection. It was not necessary to work with buffers of identical ionic strength as ionic strength effects on effective electrophoretic mobilities were corrected by modeling during data evaluation (software AnglerFish). The mobility data from capillary electrophoresis coupled to conductivity detection were determined in the pH range from 1.25 to 12.02 with a high resolution (36 pH steps). With this strategy, thermodynamic acidity constants and limiting ionic mobilities for various acidic herbicides were determined, sometimes for the first time. The model analytes included glyphosate, its metabolites, and its acetylated derivates (aminomethyl phosphonic acid, glyoxylic acid, sarcosine, glycine, N-acetyl glyphosate, N-acetyl aminomethyl phosphonic acid, hydroxymethyl phosphonic acid). The obtained data were used in simulations to optimize separations by capillary electrophoresis. Simulations correlated very well to experimental results. With the new method, the separation of glyphosate from interfering components like phosphate in beer samples was possible.


Assuntos
Herbicidas , Eletroforese Capilar/métodos , Glicina/análogos & derivados , Concentração de Íons de Hidrogênio , Glifosato
4.
J Sep Sci ; 45(20): 3887-3899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998068

RESUMO

Capillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes. The column-coupling of both dimensions was achieved by a hybrid capillary microfluidic chip setup. Reliable analyte transfer by voltage switching was enabled by an in-chip capacitively coupled contactless conductivity detector placed around the channel of the common section between two T-shaped crossings in the chip connecting both dimensions. This eliminated the need to calculate the moment of analyte transfer. A commercial capillary electrophoresis-mass spectrometry instrument with easily installable adaptations operated the setup. Prior to coupling isotachophoresis with capillary zone electrophoresis-mass spectrometry, both dimensions were optimized individually by simulations and verified experimentally. Both dimensions were able to stack/separate all degradation products of glyphosate, the most important herbicide applied worldwide. The first dimension isotachophoresis also removed phosphate, which is a critical matrix component in many environmental samples. Enrichment and separation of glyphosate and its main degradation product aminomethylphosphonic acid by the two-dimensional setup provided an excellent limit of detection of 150 pM (25 ng/L) for glyphosate.


Assuntos
Isotacoforese , Isotacoforese/métodos , Limite de Detecção , Eletroforese Capilar/métodos , Espectrometria de Massas , Glifosato
5.
Electrophoresis ; 42(12-13): 1306-1316, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33710630

RESUMO

This work introduces new hardware configurations for a capacitively coupled contactless conductivity detector (C4 D) based on capacitance-to-digital conversion (CDC) technology for CE. The aim was to improve sensitivity, handling, price, and portability of CDC-based C4 D detectors (CDCD) to reach LODs similar to classic C4 Ds with more sophisticated electric circuits. To achieve this, a systematic study on the CDCDs was carried out including a direct comparison to already established C4 D setups. Instrumental setups differing in electrode lengths, measurement modes, and amplification of excitation voltages were investigated to achieve LODs for alkali metal ions of 4 to 12 µM, similar to LODs obtained by classic C4 D setups. Lowest LODs were achieved for a setup with two 10 mm electrodes at a distance of 0.2 mm and an excitation voltage of 24 V. The detection head was exceptionally lightweight with only 2.6 g and covered only 20 mm of the capillary on total. This allowed the use of multiple detectors along the separation path to enable spatial tracking of analytes during separation. The entirely battery-powered detector assembly weighs less than 200 g, and the data are transmitted wirelessly for possible portable applications. The freely accessible hardware and software were optimized for fully automated measurements with real time data plotting and allowed handling multidetector setups. The new developments were applied to quantify the potassium salt of glyphosate in its herbicide formulation.


Assuntos
Eletroforese Capilar , Tecnologia , Capacitância Elétrica , Condutividade Elétrica , Íons
6.
Electrophoresis ; 41(12): 1045-1059, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170873

RESUMO

Electrophoretic separations are of growing interest to tackle complex analytical challenges. Nevertheless, capillary electrophoresis, as the most common mode, still suffers from insufficient detection limits due to low capillary loadability. ITP is of growing interest as preconcentration method for capillary electrophoresis and is also interesting to be applied as an independent analytical method. While mass spectrometric detection is common for capillary electrophoresis, the combination of ITP with MS is still a niche technique. In this work, we want to give an overview on isotachophoretic effects in CE-MS and ITP-MS methods, as well as coupling techniques of ITP with CE-MS. The challenges and possibilities associated with mass spectrometric detection in ITP and its coupling to capillary electrophoresis are critically discussed.


Assuntos
Isotacoforese , Espectrometria de Massas , Eletroforese Capilar
7.
Anal Bioanal Chem ; 412(24): 6149-6165, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32710277

RESUMO

Recent years showed a boost in knowledge about the presence and fate of micropollutants in the environment. Instrumental and methodological developments mainly in liquid chromatography coupled to mass spectrometry hold a large share in this success story. These techniques soon complemented gas chromatography and enabled the analysis of more polar compounds including pesticides but also household chemicals, food additives, and pharmaceuticals often present as traces in surface waters. In parallel, sample preparation techniques evolved to extract and enrich these compounds from biota and water samples. This review article looks at very polar and ionic compounds using the criterion log P ≤ 1. Considering about 240 compounds, we show that (simulated) log D values are often even lower than the corresponding log P values due to ionization of the compounds at our reference pH of 7.4. High polarity and charge are still challenging characteristics in the analysis of micropollutants and these compounds are hardly covered in current monitoring strategies of water samples. The situation is even more challenging in biota analysis given the large number of matrix constituents with similar properties. Currently, a large number of sample preparation and separation approaches are developed to meet the challenges of the analysis of very polar and ionic compounds. In addition to reviewing them, we discuss some trends: for sample preparation, preconcentration and purification efforts by SPE will continue, possibly using upcoming mixed-mode stationary phases and mixed beds in order to increase comprehensiveness in monitoring applications. For biota analysis, miniaturization and parallelization are aspects of future research. For ionic or ionizable compounds, we see electromembrane extraction as a method of choice with a high potential to increase throughput by automation. For separation, predominantly coupled to mass spectrometry, hydrophilic interaction liquid chromatography applications will increase as the polarity range ideally complements reversed phase liquid chromatography, and instrumentation and expertise are available in most laboratories. Two-dimensional applications have not yet reached maturity in liquid-phase separations to be applied in higher throughput. Possibly, the development and commercial availability of mixed-mode stationary phases make 2D applications obsolete in semi-targeted applications. An interesting alternative will enter routine analysis soon: supercritical fluid chromatography demonstrated an impressive analyte coverage but also the possibility to tailor selectivity for targeted approaches. For ionic and ionizable micropollutants, ion chromatography and capillary electrophoresis are amenable but may be used only for specialized applications such as the analysis of halogenated acids when aspects like desalting and preconcentration are solved and the key advantages are fully elaborated by further research. Graphical abstract.


Assuntos
Biota , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Microextração em Fase Líquida/métodos , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Água/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Limite de Detecção
8.
Anal Bioanal Chem ; 412(3): 561-575, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31872272

RESUMO

Statically adsorbed or covalently coupled capillary coatings are of crucial importance in capillary electrophoresis-mass spectrometry for the separation of peptides and proteins. So far, published coating strategies and commercially available coated capillaries have a limited pH-stability so that the analysis at strongly acidic pH is limited, or harsh rinsing procedures for biological sample analysis cannot be applied. We here present a capillary coating based on Si-C linkages to N-acryloylamido ethoxyethanol (AAEE) with a new synthetic strategy including LiAlH4 surface reaction. We optimized the coating method with emphasis on stability and reproducibility applying harsh rinsing procedures (strong acid, strong base and organic solvent), using the electroosmotic mobility and separation efficiency of tryptic peptides as performance measure. Complete synthesis is performed in less than 2 days for up to 8 capillaries in parallel of more than 16 m total length. Intra- and inter-batch reproducibility were determined regarding electroosmotic mobility, separation efficiency and migration time precision in CE-MS separations of tryptically digested bovine serum albumin. Coating stability towards rinsing with strong acid (1 mol/L HCl), organic solvent (acetonitrile) and strong base (1 mol/L NaOH) was investigated. Outstanding performance was found for single capillaries. However, inter-capillary reproducibility is discussed critically. The new coating was successfully applied for reproducible CE-MS separation of large proteins in diluted serum, medium-sized peptides and small and highly charged polyamines in fish egg extracts using a very acidic background electrolyte containing 0.75 mol/L acetic acid and 0.25 mol/L formic acid (pH 2.2).


Assuntos
Eletroforese Capilar/métodos , Etanol/análogos & derivados , Espectrometria de Massas/métodos , Concentração de Íons de Hidrogênio , Mapeamento de Peptídeos , Tripsina/química
9.
Anal Bioanal Chem ; 412(20): 4985-4996, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32572543

RESUMO

A method with capillary electrophoresis coupled to mass spectrometry was optimized to determine the uptake of metformin and its metabolite guanylurea by zebrafish (Danio rerio) embryos and brown trout (Salmo trutta f. fario) exposed under laboratory conditions. Metformin was extracted from fish tissues by sonication in methanol, resulting in an absolute recovery of almost 90%. For the extraction of guanylurea from brown trout, solid-phase extraction was implemented with a recovery of 84%. The use of a mixture of methanol and glacial acetic acid as a non-aqueous background electrolyte was vital to achieve robust analysis using a bare fused-silica capillary with an applied voltage of +30 kV. Problems with adsorption associated with an aqueous background electrolyte were eliminated using a non-aqueous background electrolyte made of methanol/acetic acid (97:3) with 25 mM ammonium acetate (for zebrafish embryos) or 100 mM ammonium acetate (for brown trouts), depending on the sample complexity and matrix influences. High resolution and high separation selectivity from matrix components were achieved by optimization of the ammonium acetate concentration in the background electrolyte. An extensive evaluation of matrix effects was conducted with regard to the complex matrices present in the fish samples. They required adapting the background electrolyte to higher concentrations. Applying this method to extracts of zebrafish embryos and brown trout tissue samples, limits of detection for both metformin and guanylurea in zebrafish embryos (12.2 µg/l and 15 µg/l) and brown trout tissues (15 ng/g and 34 ng/g) were in the low µg/l or ng/g range. Finally, metformin and guanylurea could be both quantified for the first time in biota samples from exposure experiments.


Assuntos
Biota , Eletroforese Capilar/métodos , Hipoglicemiantes/metabolismo , Espectrometria de Massas/métodos , Metformina/metabolismo , Ureia/metabolismo , Animais , Limite de Detecção , Extração em Fase Sólida , Truta/metabolismo , Ureia/química , Peixe-Zebra/metabolismo
10.
Anal Bioanal Chem ; 412(20): 4967-4983, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524371

RESUMO

In this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis. The advantages of our new method are the following: no derivatization is needed, high separation selectivity and thus matrix tolerance, speed of analysis, limits of detection suitable for many applications in food and environmental science, negligible disturbance by metal chelation. LODs for glyphosate were < 5 µg/L for both aqueous and beer samples, the linear range in aqueous samples was 5-3000 µg/L, for beer samples 10-3000 µg/L. For AMPA, LODs were 3.3 and 30.6 µg/L, and the linear range 10-3000 µg/L and 50-3000 µg/L, for aqueous and beer samples, respectively. Recoveries in beer samples for glyphosate were 94.3-110.7% and for AMPA 80.2-100.4%. We analyzed 12 German and 2 Danish beer samples. Quantification of glyphosate and AMPA was possible using isotopically labeled standards without enrichment, purification, or dilution, only degassing and filtration were required for sample preparation. Finally, we demonstrate the applicability of the method for other strong acids, relevant in food and environmental sciences such as N-acetyl glyphosate, N-acetyl AMPA (present in some glyphosate resistant crop), trifluoroacetic acid, 2-methyl-4-chlorophenoxyacetic acid, glufosinate and its degradation product 3-(methylphosphinico)propionic acid, oxamic acid, and others.


Assuntos
Cerveja/análise , Eletroforese Capilar/métodos , Poluentes Ambientais/análise , Glicina/análogos & derivados , Herbicidas/análise , Espectrometria de Massas/métodos , Glicina/análise , Limite de Detecção , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Glifosato
11.
Electrophoresis ; 40(21): 2806-2809, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31407812

RESUMO

An alternative CE-(indirect ultraviolet) method for the analysis of inorganic and organic anions in ethylene glycol-based engine coolants is presented using a BGE with 4 mM pyromellitic acid and 3.4 mM 1,6-hexamethylene diamine, pH 3. Baseline separation of six inorganic (e.g. nitrite, nitrate, and sulfate) and five organic anions (e.g. acetic and glycolic acid) was achieved. Quantification of 8 out of 11 specified anions was possible in stressed engine coolant samples after simple aqueous dilution. LODs between 0.8 and 15.1 mg/L with RSD values of peak areas between 2.6 and 11.9% were obtained. Some limitations due to matrix effects can be overcome with slight adaptations of the BGE. The flexibility of the method is vital regarding the increasing demands for the composition of engine coolants for pollution reduction.


Assuntos
Ânions , Eletroforese Capilar/métodos , Etilenoglicóis/química , Espectrofotometria Ultravioleta/métodos , Ânions/análise , Ânions/química , Ânions/isolamento & purificação , Fenômenos Químicos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
12.
Anal Bioanal Chem ; 410(13): 3041-3045, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29552731

RESUMO

Glyphosate is the world's most heavily applied herbicide. Worldwide, re-approval processes by authorities are ongoing, accompanied by intense public and political discussions on its possible carcinogenic effects. Further aspects involve human dietary exposure, its fate in the environment, and its impact on ecosystems. Many of these aspects are not yet fully understood. In many instances, the analytical strategies developed and applied so far have strong limitations, given the challenging physicochemical characteristics of glyphosate and its metabolites. Analytical chemists are still faced with problems in method development, reachable precision, and detection limits. Thus, not all open research questions can be answered with current strategies. This feature article wishes to address further needs in glyphosate analysis to foster enhancement of analytical strategies.

13.
Anal Bioanal Chem ; 410(3): 725-746, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098335

RESUMO

Since its introduction in 1974, the herbicide glyphosate has experienced a tremendous increase in use, with about one million tons used annually today. This review focuses on sensors and electromigration separation techniques as alternatives to chromatographic methods for the analysis of glyphosate and its metabolite aminomethyl phosphonic acid. Even with the large number of studies published, glyphosate analysis remains challenging. With its polar and depending on pH even ionic functional groups lacking a chromophore, it is difficult to analyze with chromatographic techniques. Its analysis is mostly achieved after derivatization. Its purification from food and environmental samples inevitably results incoextraction of ionic matrix components, with a further impact on analysis derivatization. Its purification from food and environmental samples inevitably results in coextraction of ionic matrix components, with a further impact on analysis and also derivatization reactions. Its ability to form chelates with metal cations is another obstacle for precise quantification. Lastly, the low limits of detection required by legislation have to be met. These challenges preclude glyphosate from being analyzed together with many other pesticides in common multiresidue (chromatographic) methods. For better monitoring of glyphosate in environmental and food samples, further fast and robust methods are required. In this review, analytical methods are summarized and discussed from the perspective of biosensors and various formats of electromigration separation techniques, including modes such as capillary electrophoresis and micellar electrokinetic chromatography, combined with various detection techniques. These methods are critically discussed with regard to matrix tolerance, limits of detection reached, and selectivity.

14.
J Comput Chem ; 38(27): 2349-2353, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28749567

RESUMO

A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol-1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol-1 . © 2017 Wiley Periodicals, Inc.

15.
Electrophoresis ; 37(22): 3020-3024, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27589152

RESUMO

We present the study on the sample transfer characteristics of two different microfluidic interfaces for 2D-CE . These interfaces were manufactured using two different microfabrication technologies: one was obtained via the classical photolithography-wet etching-anodic-bonding process; and the other was obtained via the selective laser-induced etching process. The comparison of the two interfaces, and an intact capillary as a reference, was made via the CE separation of amino acids (arginine and lysine) under different bulk flow conditions, with and without applying bias potential to the secondary channels. The influence on peak shapes, migration times, and repeatabiliy were evaluated.


Assuntos
Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/isolamento & purificação , Desenho de Equipamento , Reprodutibilidade dos Testes
16.
Anal Bioanal Chem ; 408(30): 8713-8725, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815613

RESUMO

Monitoring analytes during the transfer step from the first to the second dimension in multidimensional electrophoretic separations is crucial to determine and control the optimal time point for sample transfer and thus to avoid band broadening or unwanted splitting of the sample band with consequent sample loss. A spatially resolved intermediate on-chip LED-induced fluorescence detection system was successfully implemented for a hybrid capillary-chip glass interface. The setup includes a high-power 455-nm LED prototype as an excitation light source and a linear light fiber array consisting of 23 light fibers with a diameter of 100 µm for spatially resolved fluorescence detection in combination with a push-broom imager for hyperspectral detection. Using a basic FITC solution, the linear working range was determined to be 0.125 to 25 µg/ml for a single light guide and the absolute detection limit was 0.04 fmol at a signal-to-noise ratio of 4. With the setup presented here, labeled ß-lactoglobulin focused via capillary isoelectric focusing was detectable on-chip with a sufficient intensity to monitor the analyte band transfer in the glass-chip interface demonstrating its applicability for full or intermediate on-chip detection.


Assuntos
Eletroforese Capilar/métodos , Eletroforese em Microchip/métodos , Focalização Isoelétrica/métodos , Lactoglobulinas/isolamento & purificação , Eletroforese Capilar/instrumentação , Eletroforese em Microchip/instrumentação , Desenho de Equipamento , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Focalização Isoelétrica/instrumentação , Lactoglobulinas/química , Soluções/química , Espectrometria de Fluorescência , Coloração e Rotulagem/métodos
17.
Anal Bioanal Chem ; 407(1): 119-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25228075

RESUMO

Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.


Assuntos
Eletroforese/métodos , Proteínas/isolamento & purificação , Animais , Eletroforese/instrumentação , Humanos , Proteínas/química
18.
Anal Bioanal Chem ; 407(1): 23-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381613

RESUMO

In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes' physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.


Assuntos
Eletroforese/métodos , Ciências Forenses/métodos , Humanos , Sensibilidade e Especificidade
19.
Phys Chem Chem Phys ; 17(41): 27488-95, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26426934

RESUMO

The structure and properties of Au ultrathin films on hydroxyl-free and hydroxylated silica glass surfaces are investigated using ab initio molecular dynamics simulations. Substantial surface structure dependence of Au agglomeration behavior (solid-state dewetting) is found. On hydroxyl-free surfaces, the Au film virtually undergoes instantaneous agglomeration accompanied by the formation of voids exposing a bare silica glass surface. In contrast, simulated annealing of the Au film on hydroxylated surface models leaves its structure unchanged within the simulation time. This points to a key role of reactive defect sites in the kinetics of solid-state dewetting processes of metals deposited on the glass surface. Such sites are important for initial void nucleation and formation of metal clusters. In addition, our calculations demonstrate the crucial role of the appropriate inclusion of dispersion interactions in density functional theory simulations of metals deposited on glass surfaces. For defective, hydroxyl-free glass surfaces the dispersion correction accounts for 35% of the total adhesion energy. The effect is even more dramatic for hydroxylated glass surfaces, where adhesion energies are almost entirely due to dispersion interactions. The Au adhesion energies of 200 and 160 kJ (mol nm(2))(-1) calculated for hydroxylated glass surfaces are in good agreement with the experimental data.

20.
J Sep Sci ; 38(18): 3262-3270, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147246

RESUMO

A collaborative study on the robustness and portability of a capillary electrophoresis-mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis-mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath-flow capillary electrophoresis-mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin-digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3-12 and 9-29% RSD, respectively. These results demonstrate that capillary electrophoresis-mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis-mass spectrometry applications in biopharmaceutical analysis and related fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA