RESUMO
To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Glucose/efeitos adversos , Resistência à Insulina/genética , MAP Quinase Quinase 6/genética , Proteínas Nucleares/genética , Animais , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Lipidômica , Masculino , Camundongos , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismoRESUMO
Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.
Assuntos
Condução de Veículo , Aprendizado Profundo , Algoritmos , Redes Neurais de Computação , Análise de OndaletasRESUMO
Inflammatory responses by the innate and adaptive immune systems protect against infections and are essential to health and survival. Many diseases including atherosclerosis, osteoarthritis, rheumatoid arthritis, psoriasis, and obesity involve persistent chronic inflammation. Currently available anti-inflammatory agents, including non-steroidal anti-inflammatory drugs, steroids, and biologics, are often unsafe for chronic use due to adverse effects. The development of effective non-toxic anti-inflammatory agents for chronic use remains an important research arena. We previously reported that oral administration of Oxy210, a semi-synthetic oxysterol, ameliorates non-alcoholic steatohepatitis (NASH) induced by a high-fat diet in APOE*3-Leiden.CETP humanized mouse model of NASH and inhibits expression of hepatic and circulating levels of inflammatory cytokines. Here, we show that Oxy210 also inhibits diet-induced white adipose tissue inflammation in APOE*3-Leiden.CETP mice, evidenced by the inhibition of adipose tissue expression of IL-6, MCP-1, and CD68 macrophage marker. Oxy210 and related analogs exhibit anti-inflammatory effects in macrophages treated with lipopolysaccharide in vitro, mediated through inhibition of toll-like receptor 4 (TLR4), TLR2, and AP-1 signaling, independent of cyclooxygenase enzymes or steroid receptors. The anti-inflammatory effects of Oxy210 are correlated with the inhibition of macrophage polarization. We propose that Oxy210 and its structural analogs may be attractive candidates for future therapeutic development for targeting inflammatory diseases.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Oxisteróis , Animais , Apolipoproteínas E/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxisteróis/metabolismo , Oxisteróis/farmacologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
We report the genetic analysis of a "humanized" hyperlipidemic mouse model for progressive nonalcoholic steatohepatitis (NASH) and fibrosis. Mice carrying transgenes for human apolipoprotein E*3-Leiden and cholesteryl ester transfer protein and fed a "Western" diet were studied on the genetic backgrounds of over 100 inbred mouse strains. The mice developed hepatic inflammation and fibrosis that was highly dependent on genetic background, with vast differences in the degree of fibrosis. Histological analysis showed features characteristic of human NASH, including macrovesicular steatosis, hepatocellular ballooning, inflammatory foci, and pericellular collagen deposition. Time course experiments indicated that while hepatic triglyceride levels increased steadily on the diet, hepatic fibrosis occurred at about 12 weeks. We found that the genetic variation predisposing to NASH and fibrosis differs markedly from that predisposing to simple steatosis, consistent with a multistep model in which distinct genetic factors are involved. Moreover, genome-wide association identified distinct genetic loci contributing to steatosis and NASH. Finally, we used hepatic expression data from the mouse panel and from 68 bariatric surgery patients with normal liver, steatosis, or NASH to identify enriched biological pathways. Conclusion: The pathways showed substantial overlap between our mouse model and the human disease.
Assuntos
Apolipoproteína E3/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Aminoácidos/metabolismo , Animais , Colesterol/metabolismo , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Hiperlipidemias/complicações , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Elevated hepatic ceramide levels have been implicated in both insulin resistance (IR) and hepatic steatosis. To understand the factors contributing to hepatic ceramide levels in mice of both sexes, we have quantitated ceramides in a reference population of mice, the Hybrid Mouse Diversity Panel that has been previously characterized for a variety of metabolic syndrome traits. We observed significant positive correlations between Cer(d18:1/16:0) and IR/hepatic steatosis, consistent with previous findings, although the relationship broke down between sexes, as females were less insulin resistant, but had higher Cer(d18:1/16:0) levels than males. The sex difference was due in part to testosterone-mediated repression of ceramide synthase 6. One ceramide species, Cer(d18:1/20:0), was present at higher levels in males and was associated with IR only in males. Clear evidence of gene-by-sex and gene-by-diet interactions was observed, including sex-specific genome-wide association study results. Thus, our studies show clear differences in how hepatic ceramides are regulated between the sexes, which again suggests that the physiological roles of certain hepatic ceramides differ between the sexes.
Assuntos
Ceramidas/metabolismo , Dieta , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Caracteres Sexuais , Animais , Ceramidas/biossíntese , Feminino , Fígado/efeitos dos fármacos , Masculino , Camundongos , Testosterona/farmacologiaRESUMO
The etiology of nonalcoholic fatty liver disease is complex and influenced by factors such as obesity, insulin resistance, hyperlipidemia, and sex. We now report a study on sex difference in hepatic steatosis in the context of genetic variation using a population of inbred strains of mice. While male mice generally exhibited higher concentration of hepatic TG levels on a high-fat high-sucrose diet, sex differences showed extensive interaction with genetic variation. Differences in percentage body fat were the best predictor of hepatic steatosis among the strains and explained about 30% of the variation in both sexes. The difference in percent gonadal fat and HDL explained 9.6% and 6.7% of the difference in hepatic TGs between the sexes, respectively. Genome-wide association mapping of hepatic TG revealed some striking differences in genetic control of hepatic steatosis between females and males. Gonadectomy increased the hepatic TG to body fat percentage ratio among male, but not female, mice. Our data suggest that the difference between the sexes in hepatic TG can be partly explained by differences in body fat distribution, plasma HDL, and genetic regulation. Future studies are required to understand the molecular interactions between sex, genetics, and the environment.
Assuntos
Fígado Gorduroso/genética , Lipoproteínas HDL/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Triglicerídeos/genética , Animais , Dieta Hiperlipídica , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Feminino , Estudo de Associação Genômica Ampla , Hormônios/genética , Hormônios/metabolismo , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/sangue , Obesidade/patologia , Polimorfismo de Nucleotídeo Único/genética , Caracteres SexuaisRESUMO
Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin (Hamp1) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels.NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males.
Assuntos
Hepcidinas/biossíntese , Ferro/metabolismo , RNA Mensageiro/biossíntese , Animais , Dieta , Feminino , Hepcidinas/genética , Ferro da Dieta/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Caracteres Sexuais , Especificidade da Espécie , Distribuição Tecidual , Transferrina/metabolismoRESUMO
The Hybrid Mouse Diversity Panel (HMDP) is a collection of approximately 100 well-characterized inbred strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. While not nearly as powerful for mapping genetic loci contributing to the traits as human genome-wide association studies, it has some important advantages. First, environmental factors can be controlled. Second, relevant tissues are accessible for global molecular phenotyping. Finally, because inbred strains are renewable, results from separate studies can be integrated. Thus far, the HMDP has been studied for traits relevant to obesity, diabetes, atherosclerosis, osteoporosis, heart failure, immune regulation, fatty liver disease, and host-gut microbiota interactions. High-throughput technologies have been used to examine the genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes of the mice under various environmental conditions. All of the published data are available and can be readily used to formulate hypotheses about genes, pathways and interactions.
Assuntos
Doenças Cardiovasculares/genética , Modelos Animais de Doenças , Doenças Metabólicas/genética , Transcriptoma/genética , Animais , Aterosclerose/genética , Doenças Cardiovasculares/patologia , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/genética , Humanos , Hibridização Genética , Resistência à Insulina/genética , Doenças Metabólicas/patologia , Camundongos , Microbiota/genética , Obesidade/genética , Osteoporose/genética , Locos de Características Quantitativas/genéticaRESUMO
Thioredoxin-interacting protein (TXNIP) is an α-arrestin family member involved in redox sensing and metabolic control. Growing evidence links TXNIP to mitochondrial function, but the molecular nature of this relationship has remained poorly defined. Herein, we employed targeted metabolomics and comprehensive bioenergetic analyses to evaluate oxidative metabolism and respiratory kinetics in mouse models of total body (TKO) and skeletal muscle-specific (TXNIP(SKM-/-)) Txnip deficiency. Compared with littermate controls, both TKO and TXNIP(SKM-/-) mice had reduced exercise tolerance in association with muscle-specific impairments in substrate oxidation. Oxidative insufficiencies in TXNIP null muscles were not due to perturbations in mitochondrial mass, the electron transport chain, or emission of reactive oxygen species. Instead, metabolic profiling analyses led to the discovery that TXNIP deficiency causes marked deficits in enzymes required for catabolism of branched chain amino acids, ketones, and lactate, along with more modest reductions in enzymes of ß-oxidation and the tricarboxylic acid cycle. The decrements in enzyme activity were accompanied by comparable deficits in protein abundance without changes in mRNA expression, implying dysregulation of protein synthesis or stability. Considering that TXNIP expression increases in response to starvation, diabetes, and exercise, these findings point to a novel role for TXNIP in coordinating mitochondrial fuel switching in response to nutrient availability.
Assuntos
Proteínas de Transporte/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Oxirredutases/metabolismo , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Músculo Esquelético/enzimologia , Oxirredução , Tiorredoxinas/genéticaRESUMO
BACKGROUND AND AIMS: We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS: Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS: Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS: These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Assuntos
Anti-Inflamatórios , Aterosclerose , Células Endoteliais , Inflamação , Oxisteróis , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/metabolismo , Camundongos , Humanos , Inflamação/patologia , Inflamação/tratamento farmacológico , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Oxisteróis/metabolismo , Oxisteróis/farmacologia , Anti-Inflamatórios/farmacologia , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/complicações , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Dieta HiperlipídicaRESUMO
BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a complex disease involving both genetic and environmental factors in its onset and progression. We analyzed NASH phenotypes in a genetically diverse cohort of mice, the Hybrid Mouse Diversity Panel, to identify genes contributing to disease susceptibility. METHODS: A "systems genetics" approach, involving integration of genetic, transcriptomic, and phenotypic data, was used to identify candidate genes and pathways in a mouse model of NASH. The causal role of Matrix Gla Protein (MGP) was validated using heterozygous MGP knockout (Mgp+/-) mice. The mechanistic role of MGP in transforming growth factor-beta (TGF-ß) signaling was examined in the LX-2 stellate cell line by using a loss of function approach. RESULTS: Local cis-acting regulation of MGP was correlated with fibrosis, suggesting a causal role in NASH, and this was validated using loss of function experiments in 2 models of diet-induced NASH. Using single-cell RNA sequencing, Mgp was found to be primarily expressed in hepatic stellate cells and dendritic cells in mice. Knockdown of MGP expression in stellate LX-2 cells led to a blunted response to TGF-ß stimulation. This was associated with reduced regulatory SMAD phosphorylation and TGF-ß receptor ALK1 expression as well as increased expression of inhibitory SMAD6. Hepatic MGP expression was found to be significantly correlated with the severity of fibrosis in livers of patients with NASH, suggesting relevance to human disease. CONCLUSIONS: MGP regulates liver fibrosis and TGF-ß signaling in hepatic stellate cells and contributes to NASH pathogenesis.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Cirrose Hepática/genética , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores , Proteína de Matriz GlaRESUMO
We have developed an association-based approach using classical inbred strains of mice in which we correct for population structure, which is very extensive in mice, using an efficient mixed-model algorithm. Our approach includes inbred parental strains as well as recombinant inbred strains in order to capture loci with effect sizes typical of complex traits in mice (in the range of 5% of total trait variance). Over the last few years, we have typed the hybrid mouse diversity panel (HMDP) strains for a variety of clinical traits as well as intermediate phenotypes and have shown that the HMDP has sufficient power to map genes for highly complex traits with resolution that is in most cases less than a megabase. In this essay, we review our experience with the HMDP, describe various ongoing projects, and discuss how the HMDP may fit into the larger picture of common diseases and different approaches.
Assuntos
Camundongos Endogâmicos/genética , Animais , Bases de Dados Genéticas , CamundongosRESUMO
The necessity of vehicle fault detection and diagnosis (VFDD) is one of the main goals and demands of the Internet of Vehicles (IoV) in autonomous applications. This paper integrates various machine learning algorithms, which are applied to the failure prediction and warning of various types of vehicles, such as the vehicle transmission system, abnormal engine operation, and tire condition prediction. This paper first discusses the three main AI algorithms, such as supervised learning, unsupervised learning, and reinforcement learning, and compares the advantages and disadvantages of each algorithm in the application of system prediction. In the second part, we summarize which artificial intelligence algorithm architectures are suitable for each system failure condition. According to the fault status of different vehicles, it is necessary to carry out the evaluation of the digital filtering process. At the same time, it is necessary to preconstruct its model analysis and adjust the parameter attributes, types, and number of samples of various vehicle prediction models according to the analysis results, followed by optimization to obtain various vehicle models. Finally, through a cross-comparison and sorting, the artificial intelligence failure prediction models can be obtained, which can correspond to the failure status of a certain car model and a certain system, thereby realizing a most appropriate AI model for a specific application.
RESUMO
Thioredoxin-interacting protein (Txnip) inhibits thioredoxin NADPH-dependent reduction of protein disulfides. Total Txnip knockout (TKO) mice adapted inappropriately to prolonged fasting by shifting fuel dependence of skeletal muscle and heart from fat and ketone bodies to glucose. TKO mice exhibited increased Akt signaling, insulin sensitivity, and glycolysis in oxidative tissues (skeletal muscle and hearts) but not in lipogenic tissues (liver and adipose tissue). The selective activation of Akt in skeletal muscle and hearts was associated with impaired mitochondrial fuel oxidation and the accumulation of oxidized (inactive) PTEN, whose activity depends on reduction of two critical cysteine residues. Whereas muscle- and heart-specific Txnip knockout mice recapitulated the metabolic phenotype exhibited by TKO mice, liver-specific Txnip knockout mice were similar to WT mice. Embryonic fibroblasts derived from knockout mice also accumulated oxidized (inactive) PTEN and had elevated Akt phosphorylation. In addition, they had faster growth rates and increased dependence on anaerobic glycolysis due to impaired mitochondrial fuel oxidation, and they were resistant to doxorubicin-facilitated respiration-dependent apoptosis. In the absence of Txnip, oxidative inactivation of PTEN and subsequent activation of Akt attenuated mitochondrial respiration, resulting in the accumulation of NADH, a competitive inhibitor of thioredoxin NADPH-reductive activation of PTEN. These findings indicate that, in nonlipogenic tissues, Txnip is required to maintain sufficient thioredoxin NADPH activity to reductively reactivate oxidized PTEN and oppose Akt downstream signaling.
Assuntos
Proteínas de Transporte/metabolismo , Dissulfetos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Tiorredoxinas/metabolismo , Animais , Dieta , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Deleção de Genes , Glicólise/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Insulina/farmacologia , Resistência à Insulina , Lipídeos/administração & dosagem , Lipídeos/sangue , Lipídeos/farmacologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fenótipo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
AIMS: Non-alcoholic steatohepatitis (NASH) is associated with increased overall morbidity and mortality in non-alcoholic fatty liver disease (NAFLD) patients. Liver fibrosis is the strongest prognostic factor for clinical outcomes, liver-related mortality and liver transplantation. Currently, no single therapy or medication for NASH has been approved by the U.S. Food and Drug Administration (FDA). Oxy210, an oxysterol derivative, displays the unique property of antagonizing both Hedgehog (Hh) and transforming growth factor-beta (TGF-ß) signalling in primary human hepatic stellate cells (HSC). We hypothesized that inhibition of both Hh and TGF-ß signalling by Oxy210 could reduce hepatic fibrosis in NASH. In this study, we examined the therapeutic potential of Oxy210 on NASH in vivo. METHODS: We examined the effect of Oxy210 treatment on Hh and TGF-ß pathways in HSC. The efficacy of Oxy210 on liver fibrosis was tested in a 'humanized' hyperlipidemic mouse model of NASH that has high relevance to human pathology. APPROACH AND RESULTS: We show that Oxy210 inhibits both Hh and TGF-ß pathways in human HSC and attenuates baseline and TGF-ß-induced expression of pro-fibrotic genes in vitro. Oral delivery of Oxy210 in food resulted in significant liver exposure and significantly reduced hepatic fibrosis in mice over the course of the 16-week study with no apparent safety issues. Additionally, we observed several benefits related to NASH phenotype: (a) reduced plasma pro-inflammatory cytokine and the corresponding hepatic gene expression; (b) reduced pro-fibrotic cytokine and inflammasome gene expression in the liver; (c) reduced apoptosis in the liver; (d) reduced hepatic unesterified cholesterol accumulation; and (e) reduced plasma total and unesterified cholesterol levels. CONCLUSIONS: Oxy210 effectively ameliorated hepatic fibrosis and inflammation and improved hypercholesterolemia in mice. Our findings suggest that Oxy210 and related analogues are a new class of drug candidates that may serve as potential therapeutics candidates for NASH.
Assuntos
Proteínas Hedgehog , Hipercolesterolemia , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Estados UnidosRESUMO
The research describes the recognition and classification of the acoustic characteristics of amphibians using deep learning of deep neural network (DNN) and long short-term memory (LSTM) for biological applications. First, original data is collected from 32 species of frogs and 3 species of toads commonly found in Taiwan. Secondly, two digital filtering algorithms, linear predictive coding (LPC) and Mel-frequency cepstral coefficient (MFCC), are respectively used to collect amphibian bioacoustic features and construct the datasets. In addition, principal component analysis (PCA) algorithm is applied to achieve dimensional reduction of the training model datasets. Next, the classification of amphibian bioacoustic features is accomplished through the use of DNN and LSTM. The Pytorch platform with a GPU processor (NVIDIA GeForce GTX 1050 Ti) realizes the calculation and recognition of the acoustic feature classification results. Based on above-mentioned two algorithms, the sound feature datasets are classified and effectively summarized in several classification result tables and graphs for presentation. The results of the classification experiment of the different features of bioacoustics are verified and discussed in detail. This research seeks to extract the optimal combination of the best recognition and classification algorithms in all experimental processes.
Assuntos
Acústica , Algoritmos , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Redes Neurais de Computação , Animais , Anuros , Som , TaiwanRESUMO
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica/fisiopatologia , Condicionamento Físico Animal/métodos , Adiposidade , Animais , Glucose/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , CorridaRESUMO
BACKGROUND & AIMS: Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics. METHODS: Chronic liver injury was induced by CCl4 injections twice weekly for 6 weeks. Four hundred thirty-seven mice received CCl4 and 256 received vehicle, after which animals were euthanized for liver histology and gene expression. Using automated digital image analysis, we quantified fibrosis as the collagen proportionate area of the whole section, excluding normal collagen. RESULTS: We discovered broad variation in fibrosis among the Hybrid Mouse Diversity Panel strains, demonstrating a significant genetic influence. Genome-wide association analyses revealed significant and suggestive loci underlying susceptibility to fibrosis, some of which overlapped with loci identified in mouse crosses and human population studies. Liver global gene expression was assessed by RNA sequencing across the strains, and candidate genes were identified using differential expression and expression quantitative trait locus analyses. Gene set enrichment analyses identified the underlying pathways, of which stellate cell involvement was prominent, and coexpression network modeling identified modules associated with fibrosis. CONCLUSIONS: Our results provide a rich resource for the design of experiments to understand mechanisms underlying fibrosis and for rational strain selection when testing antifibrotic drugs.
Assuntos
Tetracloreto de Carbono/toxicidade , Redes Reguladoras de Genes/efeitos dos fármacos , Predisposição Genética para Doença , Cirrose Hepática/induzido quimicamente , Fígado/patologia , Animais , Tetracloreto de Carbono/administração & dosagem , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos , Locos de Características QuantitativasRESUMO
Pancreatic beta-cell loss through apoptosis represents a key factor in the pathogenesis of diabetes; however, no effective approaches to block this process and preserve endogenous beta-cell mass are currently available. To study the role of thioredoxin-interacting protein (TXNIP), a proapoptotic beta-cell factor we recently identified, we used HcB-19 (TXNIP nonsense mutation) and beta-cell-specific TXNIP knockout (bTKO) mice. Interestingly, HcB-19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta-cell mass (as assessed by morphometry). Moreover, HcB-19 mice are resistant to streptozotocin-induced diabetes. When intercrossed with obese, insulin-resistant, and diabetic mice, double-mutant BTBRlep(ob/ob)txnip(hcb/hcb) are even more obese, but are protected against diabetes and beta-cell apoptosis, resulting in a 3-fold increase in beta-cell mass. Beta-cell-specific TXNIP deletion also enhanced beta-cell mass (P<0.005) and protected against diabetes, and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) revealed a approximately 50-fold reduction in beta-cell apoptosis in streptozotocin-treated bTKO mice. We further discovered that TXNIP deficiency induces Akt/Bcl-xL signaling and inhibits mitochondrial beta-cell death, suggesting that these mechanisms may mediate the beta-cell protective effects of TXNIP deficiency. These results suggest that lowering beta-cell TXNIP expression could serve as a novel strategy for the treatment of type 1 and type 2 diabetes by promoting endogenous beta-cell survival.
Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiorredoxinas/genética , Proteína bcl-X/metabolismo , Animais , Apoptose/genética , Contagem de Células , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Hipoglicemia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Obesidade/complicações , Obesidade/patologia , Transdução de SinaisRESUMO
We studied sex differences in over 50 cardio-metabolic traits in a panel of 100 diverse inbred strains of mice. The results clearly showed that the effects of sex on both clinical phenotypes and gene expression depend on the genetic background. In support of this, genetic loci associated with the traits frequently showed sex specificity. For example, Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet-induced obesity. Global gene expression analyses of tissues across the panel implicated adipose tissue "beiging" and mitochondrial functions in the sex differences. Isolated mitochondria showed gene-by-sex interactions in oxidative functions, such that some strains (C57BL/6J) showed similar function between sexes, whereas others (DBA/2J and A/J) showed increased function in females. Reduced adipose mitochondrial function in males as compared to females was associated with increased susceptibility to obesity and insulin resistance. Gonadectomy studies indicated that gonadal hormones acting in a tissue-specific manner were responsible in part for the sex differences.