Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.720
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107556, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002683

RESUMO

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.

2.
Circ Res ; 132(11): e171-e187, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057625

RESUMO

BACKGROUND: Cardiac contractile function requires high energy from mitochondria, and Ca2+ from the sarcoplasmic reticulum (SR). Via local Ca2+ transfer at close mitochondria-SR contacts, cardiac excitation feedforward regulates mitochondrial ATP production to match surges in demand (excitation-bioenergetics coupling). However, pathological stresses may cause mitochondrial Ca2+ overload, excessive reactive oxygen species production and permeability transition, risking homeostatic collapse and myocyte loss. Excitation-bioenergetics coupling involves mitochondria-SR tethers but the role of tethering in cardiac physiology/pathology is debated. Endogenous tether proteins are multifunctional; therefore, nonselective targets to scrutinize interorganelle linkage. Here, we assessed the physiological/pathological relevance of selective chronic enhancement of cardiac mitochondria-SR tethering. METHODS: We introduced to mice a cardiac muscle-specific engineered tether (linker) transgene with a fluorescent protein core and deployed 2D/3D electron microscopy, biochemical approaches, fluorescence imaging, in vivo and ex vivo cardiac performance monitoring and stress challenges to characterize the linker phenotype. RESULTS: Expressed in the mature cardiomyocytes, the linker expanded and tightened individual mitochondria-junctional SR contacts; but also evoked a marked remodeling with large dense mitochondrial clusters that excluded dyads. Yet, excitation-bioenergetics coupling remained well-preserved, likely due to more longitudinal mitochondria-dyad contacts and nanotunnelling between mitochondria exposed to junctional SR and those sealed away from junctional SR. Remarkably, the linker decreased female vulnerability to acute massive ß-adrenergic stress. It also reduced myocyte death and mitochondrial calcium-overload-associated myocardial impairment in ex vivo ischemia/reperfusion injury. CONCLUSIONS: We propose that mitochondria-SR/endoplasmic reticulum contacts operate at a structural optimum. Although acute changes in tethering may cause dysfunction, upon chronic enhancement of contacts from early life, adaptive remodeling of the organelles shifts the system to a new, stable structural optimum. This remodeling balances the individually enhanced mitochondrion-junctional SR crosstalk and excitation-bioenergetics coupling, by increasing the connected mitochondrial pool and, presumably, Ca2+/reactive oxygen species capacity, which then improves the resilience to stresses associated with dysregulated hyperactive Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Retículo Sarcoplasmático , Feminino , Camundongos , Animais , Retículo Sarcoplasmático/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Cálcio/metabolismo
3.
Nano Lett ; 24(34): 10458-10466, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146031

RESUMO

Rechargeable magnesium batteries (rMBs) are promising candidates for next-generation batteries in which sulfides are widely used as cathode materials. The slow kinetics, low redox reversibility, and poor magnesium storage stability induced by the large Coulombic resistance and ionic polarization of Mg2+ ions have obstructed the development of high-performance rMBs. Herein, a Cu1.8S1-xSex cathode material with a two-dimensional sheet structure has been prepared by an anion-tuning strategy, achieving improved magnesium storage capacity and cycling stability. Element-specific synchrotron radiation analysis is evidence that selenium incorporation has indeed changed the chemical state of Cu species. Density functional theory calculations combined with kinetics analysis reveal that the anionic substitution endows the Cu1.8S1-xSex electrode with favorable charge-transfer kinetics and low ion diffusion barrier. The principal magnesium storage mechanisms and structural evolution process have been revealed in details based on a series of ex situ investigations. Our findings provide an effective heteroatom-tuning tactic of optimizing electrode structure toward advanced energy storage devices.

4.
Nano Lett ; 24(13): 3882-3889, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527217

RESUMO

We develop analytical models of optical-field-driven electron tunneling from the edge and surface of free-standing two-dimensional (2D) materials. We discover a universal scaling between the tunneling current density (J) and the electric field near the barrier (F): In(J/|F|ß) ∝ 1/|F| with ß values of 3/2 and 1 for edge emission and vertical surface emission, respectively. At ultrahigh values of F, the current density exhibits an unexpected high-field saturation effect due to the reduced dimensionality of the 2D material, which is absent in the traditional bulk material. Our calculation reveals the dc bias as an efficient method for modulating the optical-field tunneling subcycle emission characteristics. Importantly, our model is in excellent agreement with a recent experiment on graphene. Our results offer a useful framework for understanding optical-field tunneling emission from 2D materials, which are helpful for the development of optoelectronics and emerging petahertz vacuum nanoelectronics.

5.
Nano Lett ; 24(28): 8542-8549, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973706

RESUMO

Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.

6.
J Proteome Res ; 23(7): 2532-2541, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38902972

RESUMO

Metabolic dysfunction is recognized as a contributing factor in the pathogenesis of wet age-related macular degeneration (wAMD). However, the specific metabolism-related proteins implicated in wAMD remain elusive. In this study, we assessed the expression profiles of 92 metabolism-related proteins in aqueous humor (AH) samples obtained from 44 wAMD patients and 44 cataract control patients. Our findings revealed significant alterations in the expression of 60 metabolism-related proteins between the two groups. Notably, ANGPTL7 and METRNL displayed promising diagnostic potential for wAMD, as evidenced by area under the curve values of 0.88 and 0.85, respectively. Subsequent validation studies confirmed the upregulation of ANGPTL7 and METRNL in the AH of wAMD patients and in choroidal neovascularization (CNV) models. Functional assays revealed that increased ANGPTL7 and METRNL played a pro-angiogenic role in endothelial biology by promoting endothelial cell proliferation, migration, tube formation, and spouting in vitro. Moreover, in vivo studies revealed the pro-angiogenic effects of ANGPTL7 and METRNL in CNV formation. In conclusion, our findings highlight the association between elevated ANGPTL7 and METRNL levels and wAMD, suggesting their potential as novel predictive and diagnostic biomarkers for this condition. These results underscore the significance of ANGPTL7 and METRNL in the context of wAMD pathogenesis and offer new avenues for future research and therapeutic interventions.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Humor Aquoso , Biomarcadores , Degeneração Macular Exsudativa , Humor Aquoso/metabolismo , Humanos , Biomarcadores/metabolismo , Masculino , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/genética , Feminino , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Idoso , Proliferação de Células , Animais , Movimento Celular , Camundongos
7.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842135

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Assuntos
Apoptose , Biflavonoides , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
8.
J Cell Mol Med ; 28(3): e18114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38323741

RESUMO

Patients with Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) often face a grim prognosis, with PDGFRB gene fusions being commonly detected in this subgroup. Our study has unveiled a newfound fusion gene, TERF2::PDGFRB, and we have found that patients carrying this fusion gene exhibit sensitivity to dasatinib. Ba/F3 cells harbouring the TERF2::PDGFRB fusion display IL-3-independent cell proliferation through activation of the p-PDGFRB and p-STAT5 signalling pathways. These cells exhibit reduced apoptosis and demonstrate sensitivity to imatinib in vitro. When transfused into mice, Ba/F3 cells with the TERF2::PDGFRB fusion gene induce tumorigenesis and a shortened lifespan in cell-derived graft models, but this outcome can be improved with imatinib treatment. In summary, we have identified the novel TERF2::PDGFRB fusion gene, which exhibits oncogenic potential both in vitro and in vivo, making it a potential therapeutic target for tyrosine kinase inhibitors (TKIs).


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Proteína 2 de Ligação a Repetições Teloméricas , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Mesilato de Imatinib , Inibidores de Proteínas Quinases/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
Dev Biol ; 495: 92-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657508

RESUMO

The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Animais , Transporte Biológico , Drosophila/metabolismo , Enterócitos/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Homeostase , Proteínas de Drosophila/metabolismo
10.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
11.
J Cell Physiol ; : e31364, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129208

RESUMO

High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells. Here, we demonstrated that Sirtuin 2 (SIRT2) physically interacts with and deacetylates HMGB1 at 43 lysine residue at nuclear localization signal locations, strengthening its interaction with HMGB1 and causing HMGB1 to be localized in the cytoplasm. These discoveries are the first to shed light on the SIRT2 nucleoplasmic shuttle, which influences HMGB1 and its degradation, hence revealing novel therapeutic targets and avenues for neuroinflammation treatment.

12.
Curr Issues Mol Biol ; 46(5): 4551-4564, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38785544

RESUMO

Infants born preterm face an increased risk of deleterious effects on lung and brain health that can significantly alter long-term function and quality of life and even lead to death. Moreover, preterm birth is also associated with a heightened risk of diabetes and obesity later in life, leading to an increased risk of all-cause mortality in young adults born prematurely. While these preterm-birth-related conditions have been well characterized, less is known about the long-term effects of preterm birth on skeletal muscle health and, specifically, an individual's skeletal muscle hypertrophic potential later in life. In this review, we discuss how a confluence of potentially interrelated and self-perpetuating elements associated with preterm birth might converge on anabolic and catabolic pathways to ultimately blunt skeletal muscle hypertrophy, identifying critical areas for future research.

13.
BMC Med ; 22(1): 256, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902722

RESUMO

BACKGROUND: The relationship between variation in serum uric acid (SUA) levels and brain health is largely unknown. This study aimed to examine the associations of long-term variability in SUA levels with neuroimaging metrics and cognitive function. METHODS: This study recruited 1111 participants aged 25-83 years from a multicenter, community-based cohort study. The SUA concentrations were measured every two years from 2006 to 2018. We measured the intraindividual SUA variability, including the direction and magnitude of change by calculating the slope value. The associations of SUA variability with neuroimaging markers (brain macrostructural volume, microstructural integrity, white matter hyperintensity, and the presence of cerebral small vessel disease) and cognitive function were examined using generalized linear models. Mediation analyses were performed to assess whether neuroimaging markers mediate the relationship between SUA variation and cognitive function. RESULTS: Compared with the stable group, subjects with increased or decreased SUA levels were all featured by smaller brain white matter volume (beta = - 0.25, 95% confidence interval [CI] - 0.39 to - 0.11 and beta = - 0.15, 95% CI - 0.29 to - 0.02). Participants with progressively increased SUA exhibited widespread disrupted microstructural integrity, featured by lower global fractional anisotropy (beta = - 0.24, 95% CI - 0.38 to - 0.10), higher mean diffusivity (beta = 0.16, 95% CI 0.04 to 0.28) and radial diffusivity (beta = 0.19, 95% CI 0.06 to 0.31). Elevated SUA was also associated with cognitive decline (beta = - 0.18, 95% CI - 0.32 to - 0.04). White matter atrophy and impaired brain microstructural integrity mediated the impact of SUA increase on cognitive decline. CONCLUSIONS: It is the magnitude of SUA variation rather than the direction that plays a critical negative role in brain health, especially for participants with hyperuricemia. Smaller brain white matter volume and impaired microstructural integrity mediate the relationship between increased SUA level and cognitive function decline. Long-term stability of SUA level is recommended for maintaining brain health and preventing cognitive decline.


Assuntos
Disfunção Cognitiva , Neuroimagem , Ácido Úrico , Humanos , Idoso , Masculino , Disfunção Cognitiva/sangue , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Ácido Úrico/sangue , Neuroimagem/métodos , Estudos de Coortes , Adulto , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
14.
Small ; 20(3): e2304901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37695085

RESUMO

Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.

15.
Small ; 20(34): e2401314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644698

RESUMO

Bismuth-based materials have been recognized as the appealing anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity. However, the kinetics sluggishness and capacity decline induced by the structure distortion predominately retard their further development. Here, a heterostructure of polyaniline intercalated Bi2O2CO3/MXene (BOC-PA/MXene) hybrids is reported via simple self-assembly strategy. The ingenious design of heterointerface-rich architecture motivates significantly the interior self-built-in electric field (IEF) and high-density electron flow, thus accelerating the charge transfer and boosting ion diffusion. As a result, the hybrids realize a high reversible specific capacity, satisfying rate capability as well as long-term cycling stability. The in/ex situ characterizations further elucidate the stepwise intercalation-conversion-alloying reaction mechanism of BOC-PA/MXene. More encouragingly, the full cell investigation further highlights its competitive merits for practical application in further PIBs. The present work not only opens the way to the design of other electrodes with an appropriate working mechanism but also offers inspiration for built-in electric-field engineering toward high-performance energy storage devices.

16.
Small ; : e2400335, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682593

RESUMO

Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.

17.
Small ; 20(30): e2312216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412417

RESUMO

Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6Al4V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8Ni0.2(CO3)0.5(OH)·0.11H2O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30 mA cm-2 at an overpotential of only 200 mV. Remarkably, even after being compressed at 15.04 MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30 mA cm-2 at 1.75 V in full water splitting conditions and showed no significant performance degradation even after 60 h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.

18.
Small ; 20(27): e2310012, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368250

RESUMO

Developing efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large-scale water electrolysis. Herein, a unique 3D self-branched hierarchical nanostructure composed of ultra-small cobalt phosphide (CoP) nanoparticles embedded into N, P-codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization-phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm-2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm-2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.

19.
J Transl Med ; 22(1): 562, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867291

RESUMO

BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.


Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Masculino , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia , Oftalmopatias/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Neovascularização Patológica , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo
20.
Plant Physiol ; 191(2): 1153-1166, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440478

RESUMO

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.


Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Transcriptoma , Frutas/metabolismo , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA