Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sleep ; 43(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32374855

RESUMO

STUDY OBJECTIVES: Encephalopathy with electrical status epilepticus in sleep (ESES) is characterized by non-rapid eye movement (non-REM)-sleep-induced epileptiform activity and acquired cognitive deficits. The synaptic homeostasis hypothesis describes the process of daytime synaptic potentiation balanced by synaptic downscaling in non-REM-sleep and is considered crucial to retain an efficient cortical network. We aimed to study the overnight decline of slow waves, an indirect marker of synaptic downscaling, in patients with ESES and explore whether altered downscaling relates to neurodevelopmental and behavioral problems. METHODS: Retrospective study of patients with ESES with at least one whole-night electroencephalogram (EEG) and neuropsychological assessment (NPA) within 4 months. Slow waves in the first and last hour of non-REM-sleep were analyzed. Differences in slow-wave slope (SWS) and overnight slope course between the epileptic focus and non-focus electrodes and relations to neurodevelopment and behavior were analyzed. RESULTS: A total of 29 patients with 44 EEG ~ NPA combinations were included. Mean SWS decreased from 357 to 327 µV/s (-8%, p < 0.001) across the night and the overnight decrease was less pronounced in epileptic focus than in non-focus electrodes (-5.6% vs. -8.7%, p = 0.003). We found no relation between SWS and neurodevelopmental test results in cross-sectional and longitudinal analyses. Patients with behavioral problems showed less SWS decline than patients without and the difference was most striking in the epileptic focus (-0.9% vs. -8.8%, p = 0.006). CONCLUSIONS: Slow-wave homeostasis-a marker of synaptic homeostasis-is disturbed by epileptiform activity in ESES. Behavioral problems, but not neurodevelopmental test results, were related to severity of this disturbance.


Assuntos
Estado Epiléptico , Criança , Cognição , Estudos Transversais , Eletroencefalografia , Homeostase , Humanos , Estudos Retrospectivos , Sono , Estado Epiléptico/complicações
2.
J Clin Neurophysiol ; 20(4): 227-38, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14530735

RESUMO

Magnetic source imaging is claimed to have a high accuracy in epileptic focus localization and may be a guide for epilepsy surgery. Non-lesional mesiotemporal lobe epilepsy (MTLE), the most common form of epilepsy operated on, has different etiologies, which may affect the choice of surgical approach. The authors compared whole-head magnetoencephalography (MEG) with high-resolution EEG for source identification in MTLE. Nineteen patients with unilateral, nonlesional MTLE underwent a simultaneous 151-channel CTF MEG (CTF Systems, Inc., Port Coquitlam, British Columbia, Canada) and 64-channel EEG recordings with sleep induction. Three independent observers selected spikes from the EEG and MEG recordings separately. Only when there was interobserver agreement (kappa>0.4) on the presence of spikes in recordings were consensus spikes averaged. EEG and MEG equivalent current dipoles (ECD) were then integrated in the head model of the patient reconstructed from MRI. The results were compared with intraoperative electrocorticography findings. Spikes were detected in 32% of MEGs and 42% of EEGs. No patient showed MEG spikes only. Equivalent current dipole modeling correctly localized the source to the temporal lobe in four out of five MEG and three out of eight EEG recordings. MEG localized sources were more superficial and EEG localized sources were deeper. Unfortunately, basal temporal lobe areas were only partially covered by the sensor helmet of the MEG setup. Best correlation between EEG or MEG findings and electrocorticography findings was between horizontal EEG dipole orientation and prominent neocortical spiking; these patients also had a less favorable prognosis. Magnetic source imaging is currently unlikely to alter the surgical management of MTLE. The yield of spikes is too low, and ECD modeling shows only partial correlation with electrocorticography findings. Moreover, the whole-head MEG helmet provides insufficient coverage of the temporal lobe.


Assuntos
Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico , Magnetoencefalografia , Adulto , Mapeamento Encefálico , Campos Eletromagnéticos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA