Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 80(16-18): 987-1001, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849994

RESUMO

Fish are exposed to a complex mixture of endocrine disrupting compounds (EDC), some of which display antiestrogenic activity leading to suppression of estrogen receptor (ER)- mediated reproductive processes. Although the main mode of action (MoA) of these antiestrogens is to directly interfere with natural ligand binding of the ER, several other MoA have been proposed. The aim of the present study was to characterize single and combined antiestrogenic effects of the aryl hydrocarbon receptor (AhR)-agonist ß-naphthoflavone (BNF) and ER-antagonist 4-hydroxytamoxifen (OHT) on vitellogenin (Vtg) protein using primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Supporting transcriptional analysis of ER-responsive genes (estrogen receptor-α (er-α), vitellogenin-1 (vtg-1), eggshell zona radiata protein (zrp)) and AhR-mediated genes (aryl hydrocarbon receptor-2ß, cytochrome p450-1a (cyp1a)) was performed by qPCR to characterize the antiestrogenic influence on ER- and AhR-mediated responses. Data demonstrated that both BNF and OHT significantly reduced 17ß-estradiol (E2)-induced Vtg protein expression in a concentration responsive manner, whereas exposure to a mixture of these produced an additive antiestrogenic effect. The results observed at the protein level were further supported by transcriptional analysis of ER-responsive genes (er-α, vtg-1, zrp), where only E2-induced vtg-1 gene expression was significantly decreased by OHT and the mixture of OHT and BNF. E2-induced er-α and zrp gene expression was not markedly altered. The significant reduction of E2-induced vtg-1 gene expression by OHT suggested that the antiestrogenic effect of this compound may be associated with ER signaling pathway. Specific genes involved in putative AhR-ER cross-talk were also investigated, however none were directly associated with the compound anti-estrogenic MoA. Although the MoA of the single compounds and mixture were not completely characterized, the present study enhanced our knowledge of the combined toxicity mediated by antiestrogens acting through different MoA.


Assuntos
Disruptores Endócrinos/toxicidade , Moduladores de Receptor Estrogênico/toxicidade , Hepatócitos/efeitos dos fármacos , Oncorhynchus mykiss/genética , Vitelogeninas/biossíntese , beta-Naftoflavona/toxicidade , Animais , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Estradiol/toxicidade , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Hepatócitos/metabolismo , Masculino , Oncorhynchus mykiss/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/toxicidade
2.
J Toxicol Environ Health A ; 80(16-18): 1017-1030, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28862540

RESUMO

Contaminants from various anthropogenic activities are detected in the Arctic due to long-range atmospheric transport, ocean currents, and living organisms such as migrating fish or seabirds. Although levels of persistent organic pollutants (POPs) in Arctic fish are generally low, local hot spots of contamination were found in freshwater systems such as Lake Ellasjøen at Bjørnøya (Bear Island, Norway). Higher concentrations of organic halogenated compounds (OHC), and higher levels of cytochrome P450 and DNA-double strand breaks were reported in Arctic char (Salvelinus alpinus) from this lake compared to fish from other lakes on Bjørnøya. Although several of the measured contaminants are potential endocrine disrupters, few studies have investigated potential endocrine disruptive effects of the contaminant cocktail in this fish population. The aim of this study was to compare acutely toxic and estrogenic potency of the cocktail of pollutants as evidenced by cytotoxic and/or estrogenic effects in vitro using extracts of Arctic char livers from contaminated Lake Ellasjøen with those from less contaminated Lake Laksvatn at Bjørnøya. This was performed by in situ sampling and contaminant extraction from liver tissue, followed by chemical analysis and in vitro testing of the following contaminated tissue extracts: F1-nonpolar OHC, F2-polar pesticides and metabolites of OHC, and F3-polar OHC. Contaminant levels were highest in extracts from Ellasjøen fish. The F2 and F3 extracts from Lake Laksvatn and Lake Ellasjøen fish reduced in vitro cell viability at a concentration ratio of 0.03-1 relative to tissue concentration in Arctic char. Only the F3 liver extract from Ellasjøen fish increased in vitro vitellogenin protein expression. Although compounds such as estrogenic OH-PCBs were quantified in Ellasjøen F3 extracts, it remains to be determined which compounds were inducing estrogenic effects.


Assuntos
Hepatócitos/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Extratos de Tecidos/química , Truta , Animais , Regiões Árticas , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Feminino , Hepatócitos/metabolismo , Lagos/química , Limite de Detecção , Masculino , Noruega , Vitelogeninas/genética , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Toxicol Sci ; 169(2): 353-364, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825313

RESUMO

Predicting fish acute toxicity of chemicals in vitro is an attractive alternative method to the conventional approach using juvenile and adult fish. The rainbow trout (Oncorhynchus mykiss) cell line assay with RTgill-W1 cells has been designed for this purpose. It quantifies cell viability using fluorescent measurements for metabolic activity, cell- and lysosomal-membrane integrity on the same set of cells. Results from over 70 organic chemicals attest to the high predictive capacity of this test. We here report on the repeatability (intralaboratory variability) and reproducibility (interlaboratory variability) of the RTgill-W1 cell line assay in a round-robin study focusing on 6 test chemicals involving 6 laboratories from the industrial and academic sector. All participating laboratories were able to establish the assay according to preset quality criteria even though, apart from the lead laboratory, none had previously worked with the RTgill-W1 cell line. Concentration-response modeling, based on either nominal or geometric mean-derived measured concentrations, yielded effect concentrations (EC50) that spanned approximately 4 orders of magnitude over the chemical range, covering all fish acute toxicity categories. Coefficients of variation for intralaboratory and interlaboratory variability for the average of the 3 fluorescent cell viability measurements were 15.5% and 30.8%, respectively, which is comparable to other fish-derived, small-scale bioassays. This study therefore underlines the robustness of the RTgill-W1 cell line assay and its accurate performance when carried out by operators in different laboratory settings.


Assuntos
Testes de Toxicidade Aguda/métodos , Compostos de Anilina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Laboratórios , Oncorhynchus mykiss , Reprodutibilidade dos Testes
4.
Aquat Toxicol ; 187: 141-152, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28411469

RESUMO

Contaminants find their way to the Arctic through long-range atmospheric transport, transport via ocean currents, and through increased anthropogenic activity. Some of the typical pollutants reaching the Arctic (PAHs, PCBs) are known to induce cytochrome P450 1a (CYP1A) protein expression and ethoxyresorufin-O-deethylase (EROD) activity through the aryl hydrocarbon receptor (AhR). In addition, some endocrine disrupting chemicals (EDCs) such as estrogen mimics (xenoestrogens) have been documented in Arctic areas and they may interfere with natural sexual development and reproduction. In vitro assays that are capable of detecting effects of such pollutants, covering multiple endpoints, are generally based on mammalian or temperate species and there are currently no well-characterized cell-based in vitro assays for effect assessment from Arctic fish species. The present study aimed to develop a high-throughput and multi-endpoint in vitro assay from Arctic char (Salvelinus alpinus) to provide a non-animal (alternative) testing method for an ecologically relevant Arctic species. A method for isolation and exposure of primary hepatocytes from Arctic char for studying the toxic effects and mode of action (MoA) of pollutants was applied and validated. The multi-versatility of the bioassay was assessed by classical biomarker responses such as cell viability (membrane integrity and metabolic activity), phase I detoxification (CYP1A protein expression, EROD activity) and estrogen receptor (ER) mediated vitellogenin (Vtg) protein expression using a selection of model compounds, environmental pollutants and an environmental extract containing a complex mixture of pollutants. Primary hepatocytes from Arctic char were successfully isolated and culture conditions optimized to identify the most optimal assay conditions for covering multiple endpoints. The hepatocytes responded with concentration-dependent responses to all of the model compounds, most of the environmental pollutants and the environmental sample tested. The bioassay response and sensitivity of the hepatocytes from Arctic char differed slightly from closely related salmonid species, thus highlighting the need for developing in vitro assays relevant for Arctic species. The present multi-endpoint in vitro assay offer a highly versatile tool to screen potential effects of pollutants and complex samples relevant for Arctic exposure scenarios.


Assuntos
Alternativas ao Uso de Animais , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Hepatócitos/efeitos dos fármacos , Truta/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Regiões Árticas , Biomarcadores/metabolismo , Células Cultivadas , Citocromo P-450 CYP1A1/metabolismo , Estrogênios/metabolismo , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Cultura Primária de Células , Receptores de Hidrocarboneto Arílico/metabolismo , Vitelogeninas/metabolismo
5.
Aquat Toxicol ; 190: 150-161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711771

RESUMO

Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL-1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000µgg-1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC50 values for cytotoxicity were obtained for 16 compounds and ranged from 77µM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic monoaromatic acids and alkylnaphthalenes were the most toxic. The observed cytotoxicity of the chemicals correlated well with the hydrophobicity (LogKOW) suggesting that the toxicity was predominantly due to a non-specific MoA. Interestingly, two compounds induced the ER-mediated production of vitellogenin (Vtg) and six compounds induced the AhR-mediated Ethoxyresorufin-O-deethylase (EROD) enzymatic activity to >20% of the positive control; by doing so suggesting that they may act as ER or AhR agonists in fish. The heterogeneous group of 'UCM compounds' tested exhibited multiple MoA that may potentially cause adverse effects in fish. Additional studies to determine if these compounds may cause adverse effects in vivo at environmentally relevant concentrations, are warranted to identify if such compounds are indeed of potential environmental concern.


Assuntos
Misturas Complexas/toxicidade , Hepatócitos/efeitos dos fármacos , Hidrocarbonetos Aromáticos/toxicidade , Oncorhynchus mykiss , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Gasosa , Misturas Complexas/química , Citocromo P-450 CYP1A1/metabolismo , Hepatócitos/metabolismo , Hidrocarbonetos Aromáticos/química , Campos de Petróleo e Gás , Oncorhynchus mykiss/metabolismo , Petróleo/toxicidade , Cultura Primária de Células , Vitelogeninas/metabolismo , Poluentes Químicos da Água/química
6.
Aquat Toxicol ; 169: 90-104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26519835

RESUMO

The potential impact of endocrine disrupting chemicals (EDCs) in the aquatic environment has driven the development of screening assays to evaluate the estrogenic properties of chemicals and their effects on aquatic organisms such as fish. However, obtaining full concentration-response relationships in animal (in vivo) exposure studies are laborious, costly and unethical, hence a need for developing feasible alternative (non-animal) methods. Use of in vitro bioassays such as primary fish hepatocytes, which retain many of the native properties of the liver, has been proposed for in vitro screening of estrogen receptor (ER) agonists and antagonists. The aim of present study was to characterize the molecular mode of action (MoA) of the ER agonist 17α-ethinylestradiol (EE2) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. A custom designed salmonid 60,000-feature (60k) oligonucleotide microarray was used to characterize the potential MoAs after 48h exposure to EE2. The microarray analysis revealed several concentration-dependent gene expression alterations including classical estrogen sensitive biomarker gene expression (e.g. estrogen receptor α, vitellogenin, zona radiata). Gene Ontology (GO) analysis displayed transcriptional changes suggesting interference of cellular growth, fatty acid and lipid metabolism potentially mediated through the estrogen receptor (ER), which were proposed to be associated with modulation of genes involved in endocrine function and reproduction. Pathway analysis supported the identified GOs and revealed modulation of additional genes associated with apoptosis and cholesterol biosynthesis. Differentially expressed genes (DEGs) related to impaired lipid metabolism (e.g. peroxisome proliferator-activated receptor α and γ), growth (e.g. insulin growth factor protein 1), phase I and II biotransformation (e.g. cytochrome P450 1A, sulfotransferase, UDP-glucuronosyltransferase and glutathione S-transferase) provided additional insight into the MoA of EE2 in primary fish hepatocytes. Results from the present study suggest that biotransformation, estrogen receptor-mediated responses, lipid homeostasis, growth and cancer/apoptosis in primary fish hepatocytes may be altered after short-term exposure to ER-agonists such as EE2. In many cases the observed changes were similar to those reported for estrogen-exposed fish in vivo. In conclusion, global transcriptional analysis demonstrated that EE2 affected a number of toxicologically relevant pathways associated with an estrogenic MoA in the rainbow trout hepatocytes.


Assuntos
Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Hepatócitos/efeitos dos fármacos , Oncorhynchus mykiss/genética , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Células Cultivadas , Disruptores Endócrinos/farmacocinética , Etinilestradiol/farmacocinética , Feminino , Glutationa Transferase/metabolismo , Hepatócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oncorhynchus mykiss/metabolismo , PPAR alfa/genética , Cultura Primária de Células , Receptores de Estrogênio/metabolismo , Vitelogeninas/metabolismo , Poluentes Químicos da Água/farmacocinética
7.
Aquat Toxicol ; 159: 233-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560651

RESUMO

Vitellogenin (Vtg) induction in primary fish hepatocytes has been proposed as an in vitro screening assay for ER agonists and antagonists, but has not yet been used extensively as a high-throughput screening tool due to poor reproducibility, sensitivity and overall feasibility. The present work has evaluated the role of seasonal variation, normalization, optimal culture and assay conditions on the sensitivity, responsiveness and reproducibility of in vitro vtg gene mRNA and protein expression in rainbow trout (Oncorhynchus mykiss) primary hepatocytes using the xenoestrogen 17α-ethynylestradiol (EE2) as a test chemical. The results show that primary hepatocytes display a relatively high individual and seasonal variation in both Vtg mRNA and protein induction potential, although less variance was observed in assay sensitivity. Data normalization of assay response to maximum (3 nM EE2) and minimum (DMSO) Vtg production dramatically reduced this variance and led to improved assay reproducibility. A time-dependent response was observed both for mRNA and protein expression, reaching maximum Vtg induction after 96 h of exposure, although reproducible concentration response curves for both Vtg mRNA and protein could be obtained already after 48 h. A need for chemical re-exposure of the hepatocytes was identified to be important for sustaining exposure concentrations in extended studies (>48 h), whereas different plate formats (96, 24 or 6 wells) did not affect the bioassay performance. In conclusion, standardization of hepatocyte bioassay and test conditions as well as data-normalization procedures are proposed to be instrumental for more consistent and comparable results in future use of this in vitro assay.


Assuntos
Estrogênios/toxicidade , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Oncorhynchus mykiss/genética , Vitelogeninas/genética , Animais , Bioensaio/normas , Etinilestradiol/toxicidade , Ensaios de Triagem em Larga Escala/normas , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 524-525: 104-14, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25889549

RESUMO

The blue mussel (Mytilus spp.) has been used to assess the potential biological effects of the discharge effluent from the Sydvaranger mine, which releases its tailings into Bøk fjord at Kirkenes in the north of Norway. Metal bioaccumulation and a suite of biomarkers were measured in mussels positioned for 6 weeks at varying distances from the discharge outlet. The biomarkers used included: stress on stress (SS); condition index (CI); cellular energy allocation (CEA); micronuclei formation (MN); lysosomal membrane stability (LMS), basophilic cell volume (VvBAS); and neutral lipid (NL) accumulation. The individual biomarkers were integrated using the integrated biological response (IBR/n) index. The accumulation of Fe was significantly higher in mussels located closer to the discharge outlet, indicating that these mussels had been exposed to the suspended mine effluent. The IBR/n results were in good agreement with the location of the mussels in relation to the distance from the discharge outlet and expected exposure to the mine effluent. Several biomarkers showed responses resulting in higher IBR/n values of analysed mussels within a 3 km distance from the tailing discharge.


Assuntos
Monitoramento Ambiental/métodos , Mytilus edulis/metabolismo , Poluentes Químicos da Água/análise , Animais , Biomarcadores/metabolismo , Ferro , Mineração , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA