Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(11): 6569-6586, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107018

RESUMO

Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , DnaB Helicases/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases/metabolismo , Modelos Moleculares , Conformação Proteica , Serina/química
2.
Nucleic Acids Res ; 48(14): e79, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32496553

RESUMO

Diverse classes of silencing small (s)RNAs operate via ARGONAUTE-family proteins within RNA-induced-silencing-complexes (RISCs). Here, we have streamlined various embodiments of a Q-sepharose-based RISC-purification method that relies on conserved biochemical properties of all ARGONAUTEs. We show, in multiple benchmarking assays, that the resulting 15-min benchtop extraction procedure allows simultaneous purification of all known classes of RISC-associated sRNAs without prior knowledge of the samples-intrinsic ARGONAUTE repertoires. Optimized under a user-friendly format, the method - coined 'TraPR' for Trans-kingdom, rapid, affordable Purification of RISCs - operates irrespectively of the organism, tissue, cell type or bio-fluid of interest, and scales to minute amounts of input material. The method is highly suited for direct profiling of silencing sRNAs, with TraPR-generated sequencing libraries outperforming those obtained via gold-standard procedures that require immunoprecipitations and/or lengthy polyacrylamide gel-selection. TraPR considerably improves the quality and consistency of silencing sRNA sample preparation including from notoriously difficult-to-handle tissues/bio-fluids such as starchy storage roots or mammalian plasma, and regardless of RNA contaminants or RNA degradation status of samples.


Assuntos
Proteínas Argonautas/metabolismo , Cromatografia Líquida/métodos , RNA Interferente Pequeno/isolamento & purificação , Complexo de Inativação Induzido por RNA/química , Animais , Resinas de Troca Aniônica , Proteínas Argonautas/isolamento & purificação , Linhagem Celular Tumoral , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos C57BL , Polinucleotídeo 5'-Hidroxiquinase , RNA Fúngico/isolamento & purificação , RNA de Helmintos/isolamento & purificação , RNA Neoplásico/isolamento & purificação , RNA de Plantas/isolamento & purificação , RNA de Protozoário/isolamento & purificação , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/metabolismo , Sefarose , Dióxido de Silício , Ultracentrifugação
3.
Fungal Genet Biol ; 130: 1-10, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30980907

RESUMO

By screening suppressors of a respiratory mutant lacking a functional cytochrome pathway in the filamentous fungus Podospora anserina, we isolated a mutation located in the phosphatase domain of the bi-functional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2). We show that the inactivation of the phosphatase but not of the kinase domain is responsible for the suppressor effect that results from the activation of the RSEs transcription factors that control expression of AOX, an alternative oxidase able to bypass the mitochondria cytochrome pathway of respiration. Remarkably, activation of the RSEs also stimulates the expression of the gluconeogenic enzymes, fructose-1,6 bi-phosphatase (FBPase-1) and phosphoenolpyruvate carboxykinase (PCK-1). We thus reveal in P. anserina an apparently paradoxical situation where the inactivation of the phosphatase domain of PFK-2/FBPase-2, supposed to stimulate glycolysis, is correlated with the transcriptional induction of the gluconeogenic enzymes. Phylogenic analysis revealed the presence of multiple presumed PFK-2/FBPase-2 isoforms in all the species of tested Ascomycetes.


Assuntos
Gluconeogênese/fisiologia , Proteínas Mitocondriais/metabolismo , Mutação , Oxirredutases/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteínas de Plantas/metabolismo , Podospora/enzimologia , Podospora/genética , Ativação Transcricional/genética , Alelos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Domínios Proteicos/genética , Isoformas de Proteínas , Alinhamento de Sequência , Fatores de Transcrição , Ativação Transcricional/fisiologia
4.
Fungal Genet Biol ; 82: 228-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26231682

RESUMO

In Podospora anserina, the loss of function of the cytochrome segment of the mitochondrial respiratory chain is viable. This is due to the presence in this organism, as in most filamentous fungi, of an alternative respiratory oxidase (AOX) that provides a bypass to the cytochrome pathway. However mutants lacking a functional cytochrome pathway present multiple phenotypes including poorly colored thin mycelium and slow growth. In a large genetic screen based on the improvement of these phenotypes, we isolated a large number of independent suppressor mutations. Most of them led to the constitutive overexpression of the aox gene. In this study, we characterize a new suppressor mutation that does not affect the production of AOX. It is a loss-of-function mutation in the gene encoding the MED13 subunit of the kinase module of the Mediator complex. Inactivation of the cdk8 gene encoding another subunit of the same module also results in partial suppression of a cytochrome-deficient mutant. Analysis of strains lacking the MED13 or CDK8 subunits points to the importance of these subunits as regulators involved in diverse physiological processes such as growth, longevity and sexual development. Interestingly, transcriptional analyses indicate that in P. anserina, loss of the respiratory cytochrome pathway results in the up-regulation of glycolysis-related genes revealing a new type of retrograde regulation. The loss of MED13 augments the up-regulation of some of these genes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fenótipo , Podospora/genética , Podospora/metabolismo , Subunidades Proteicas , Deleção de Sequência , Respiração Celular , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Glicólise , Estresse Oxidativo , Transcrição Gênica
5.
Eukaryot Cell ; 13(1): 53-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186951

RESUMO

In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools.


Assuntos
Proteínas Fúngicas/metabolismo , Podospora/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Podospora/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Dev Cell ; 57(8): 1037-1052.e8, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35429435

RESUMO

Polycomb repressive complex 2 (PRC2) maintains transcriptionally silent genes in a repressed state via deposition of histone H3K27-trimethyl (me3) marks. PRC2 has also been implicated in silencing transposable elements (TEs), yet how PRC2 is targeted to TEs remains unclear. To address this question, we identified proteins that physically interact with the Paramecium enhancer-of-zeste Ezl1 enzyme, which catalyzes H3K9me3 and H3K27me3 deposition at TEs. We show that the Paramecium PRC2 core complex comprises four subunits, each required in vivo for catalytic activity. We also identify PRC2 cofactors, including the RNA interference (RNAi) effector Ptiwi09, which are necessary to target H3K9me3 and H3K27me3 to TEs. We find that the physical interaction between PRC2 and the RNAi pathway is mediated by a RING finger protein and that small RNA recruitment of PRC2 to TEs is analogous to the small RNA recruitment of H3K9 methylation SU(VAR)3-9 enzymes.


Assuntos
Paramecium , Complexo Repressor Polycomb 2 , Elementos de DNA Transponíveis/genética , Histonas/metabolismo , Paramecium/genética , Paramecium/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA
7.
Nat Commun ; 10(1): 2710, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221974

RESUMO

In animals and plants, the H3K9me3 and H3K27me3 chromatin silencing marks are deposited by different protein machineries. H3K9me3 is catalyzed by the SET-domain SU(VAR)3-9 enzymes, while H3K27me3 is catalyzed by the SET-domain Enhancer-of-zeste enzymes, which are the catalytic subunits of Polycomb Repressive Complex 2 (PRC2). Here, we show that the Enhancer-of-zeste-like protein Ezl1 from the unicellular eukaryote Paramecium tetraurelia, which exhibits significant sequence and structural similarities with human EZH2, catalyzes methylation of histone H3 in vitro and in vivo with an apparent specificity toward K9 and K27. We find that H3K9me3 and H3K27me3 co-occur at multiple families of transposable elements in an Ezl1-dependent manner. We demonstrate that loss of these histone marks results in global transcriptional hyperactivation of transposable elements with modest effects on protein-coding gene expression. Our study suggests that although often considered functionally distinct, H3K9me3 and H3K27me3 may share a common evolutionary history as well as a common ancestral role in silencing transposable elements.


Assuntos
Elementos de DNA Transponíveis/genética , Inativação Gênica , Histonas/genética , Paramecium tetraurellia/genética , Complexo Repressor Polycomb 2/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA