RESUMO
7-Deazapurines are known to possess broad antiviral activity, however the 2'-C-methylguanosine analogue displays poor cell permeation and limited phosphorylation, thus is not an efficient inhibitor of hepatitis C virus (HCV) replication. We previously reported the 6-O-methyl entity as a prodrug moiety to increase liphophilicity of guanine nucleosides and the ProTide approach applied to 2'-C-methyl-6-O-methylguanosine has lead to potent HCV inhibitors now in clinical trials. In this Letter, we report the synthesis and biological evaluation of 2'-C-methyl-6-O-methyl-7-deaza guanosine and ProTide derivatives. In contrast to prior studies, removal of the N-7 of the nucleobase entirely negates anti-HCV activity compared to the 2'-C-methyl-6-O-methylguanosine analogues. To understand better this significant loss of activity, enzymatic assays and molecular modeling were carried out and suggested 2'-C-methyl-6-O-methyl-7-deaza guanosine and related ProTides do not act as efficient prodrugs of the free nucleotide, in marked contrast to the case of the parent guanine analogue.
Assuntos
Alanina/química , Amidas/farmacologia , Antivirais/farmacologia , Ésteres/farmacologia , Guanina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Ácidos Fosfóricos/farmacologia , Amidas/síntese química , Amidas/química , Antivirais/síntese química , Antivirais/química , Ésteres/síntese química , Ésteres/química , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ácidos Fosfóricos/síntese química , Ácidos Fosfóricos/químicaRESUMO
INX-08189 is an aryl-phosphoramidate of 6-O-methyl-2'-C-methyl guanosine. INX-08189 was highly potent in replicon assays, with a 50% effective concentration of 10±6 nM against hepatitis C genotype 1b at 72 h. The inhibitory effect on viral replication was rapid, with a 50% effective concentration (EC50) of 35±8 nM at 24 h. An intracellular 2'-C-methyl guanosine triphosphate (2'-C-MeGTP) concentration of 2.43±0.42 pmol/10(6) cells was sufficient to achieve 90% inhibition of viral replication. In vitro resistance studies confirmed that the S282T mutation in the NS5b gene conferred an approximately 10-fold reduction in sensitivity to INX-08189. However, the complete inhibition of S282T mutant replicons still could be achieved with an EC90 of 344±170 nM. Drug combination studies of INX-08189 and ribavirin indicated significant synergy in antiviral potency both in wild-type and S282T-expressing replicons. Genotype 1b replicons could be cleared after 14 days of culture when exposed to as little as 20 nM INX-08189. No evidence of mitochondrial toxicity was observed after 14 days of INX-08189 exposure in both HepG2 and CEM human cell lines. In vivo studies of rats and cynomolgus monkeys demonstrated that 2'-C-MeGTP concentrations in liver equivalent to the EC90 could be attained after a single oral dose of INX-08189. Rat liver 2'-C-MeGTP concentrations were proportional to dose, sustained for greater than 24 h, and correlated with plasma concentrations of the nucleoside metabolite 2'-C-methyl guanosine. The characteristics displayed by INX-08189 support its continued development as a clinical candidate for the treatment of chronic HCV infection.
Assuntos
Amidas/química , Antivirais/farmacologia , Antivirais/farmacocinética , Guanosina/farmacologia , Guanosina/farmacocinética , Hepacivirus/efeitos dos fármacos , Ácidos Fosfóricos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Guanosina/análogos & derivados , Guanosina/química , Humanos , Macaca fascicularis , Masculino , Pró-Fármacos/química , Ratos , Ratos Sprague-Dawley , Replicação Viral/efeitos dos fármacosRESUMO
We herein report phosphorodiamidates as a significant new phosphate prodrug motif. Sixty-seven phosphorodiamidates are reported of two 6-O-alkyl 2'-C-methyl guanosines, with significant variation in the diamidate structure. Both symmetrical and asymmetric phosphorodiamidates are reported, derived from various esterified amino acids, both d and l, and also from various simple amines. All of the compounds were evaluated versus hepatitis C virus in replicon assay, and nanomolar activity levels were observed. Many compounds were noncytotoxic at 100 µM, leading to high antiviral selectivities. The agents are stable in acidic, neutral, and moderately basic media and in selected biological media but show efficient processing by carboxypeptidases and efficiently yield the free nucleoside monophosphate in cells. On the basis of in vitro data, eight leads were selected for additional in vivo evaluation, with the intent of selecting one candidate for progression toward clinical studies. This phosphorodiamidate prodrug method may have broad application outside of HCV and antivirals as it offers many of the advantages of phosphoramidate ProTides but without the chirality issues present in most cases.
Assuntos
Antivirais/síntese química , Guanosina/análogos & derivados , Guanosina/síntese química , Hepacivirus/efeitos dos fármacos , Compostos Organofosforados/síntese química , Pró-Fármacos/síntese química , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Catepsina A/metabolismo , Linhagem Celular , Estabilidade de Medicamentos , Guanosina/farmacocinética , Guanosina/farmacologia , Hepacivirus/genética , Humanos , Fígado/metabolismo , Masculino , Modelos Moleculares , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/farmacologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Ratos Sprague-Dawley , Soro , Relação Estrutura-AtividadeRESUMO
Hepatitis C virus infection constitutes a serious health problem in need of more effective therapies. Nucleoside analogues with improved exposure, efficacy, and selectivity are recognized as likely key components of future HCV therapy. 2'-C-Methylguanosine triphosphate has been known as a potent inhibitor of HCV RNA polymerase for some time, but the parent nucleoside is only moderately active due to poor intracellular phosphorylation. We herein report the application of phosphoramidate ProTide technology to bypass the rate-limiting initial phosphorylation of this nucleoside. Over 30 novel ProTides are reported, with variations in the aryl, ester, and amino acid regions. l-Alanine compounds are recognized as potent and selective inhibitors of HCV in replicon assay but lack rodent plasma stability despite considerable ester variation. Amino acid variation retaining the lead benzyl ester moiety gives an increase in rodent stability but at the cost of potency. Finally l-valine esters with ester variation lead to potent, stable compounds. Pharmacokinetic studies on these agents in the mouse reveal liver exposure to the bioactive triphosphate species following single oral dosing. Systemic exposure of the ProTide and parent nucleoside are low, indicating possible low toxicity in vivo, while liver concentrations of the active species may be predictive of efficacy in the clinic. This represents one of the most thorough cross-species studies of ProTides to date.