Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34197737

RESUMO

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , DNA/genética , Exonucleases/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , DNA Helicases/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Oncogenes/genética , Fosforilação/genética , Regulação para Cima/genética
2.
Subcell Biochem ; 100: 115-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301493

RESUMO

The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.


Assuntos
Envelhecimento , Histona Acetiltransferases , Neoplasias , Sirtuínas , Humanos , Acetilação , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Neoplasias/genética , Sirtuínas/genética , Sirtuínas/metabolismo
3.
Chromosoma ; 129(3-4): 215-226, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32651609

RESUMO

Heterochromatin protein 1ß (HP1ß), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1ß negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1ß from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1ß in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.


Assuntos
Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese/genética , Alelos , Animais , Apoptose/genética , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Marcação de Genes , Loci Gênicos , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Maturação do Esperma/genética , Espermatogênese/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/metabolismo
4.
J Biol Chem ; 294(37): 13619-13628, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31320473

RESUMO

Prion diseases are a group of incurable neurodegenerative disorders that affect humans and animals via infection with proteinaceous particles called prions. Prions are composed of PrPSc, a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc As PrPSc accumulates, cellular stress mechanisms are activated to maintain cellular proteostasis, including increased protein chaperone levels. However, the exact roles of several of these chaperones remain unclear. Here, using various methodologies to monitor prion replication (i.e. protein misfolding cyclic amplification and cellular and animal infectivity bioassays), we studied the potential role of the molecular chaperone heat shock protein 70 (HSP70) in prion replication in vitro and in vivo Our results indicated that pharmacological induction of the heat shock response in cells chronically infected with prions significantly decreased PrPSc accumulation. We also found that HSP70 alters prion replication in vitro More importantly, prion infection of mice lacking the genes encoding stress-induced HSP70 exhibited accelerated prion disease progression compared with WT mice. In parallel with HSP70 being known to respond to endogenous and exogenous stressors such as heat, infection, toxicants, and ischemia, our results indicate that HSP70 may also play an important role in suppressing or delaying prion disease progression, opening opportunities for therapeutic intervention.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Doenças Priônicas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Progressão da Doença , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Priônicas/metabolismo , Príons/metabolismo , Dobramento de Proteína
5.
FASEB J ; 28(2): 655-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24165481

RESUMO

The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.


Assuntos
Proteínas Argonautas/metabolismo , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/fisiologia , Mitose/fisiologia , Animais , Proteínas Argonautas/genética , Linhagem Celular , Quinase 1 do Ponto de Checagem , Ciclina B/genética , Drosophila , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Imuno-Histoquímica , MicroRNAs/genética , Mitose/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
J Immunol ; 191(3): 1393-403, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817427

RESUMO

Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that TLR4 confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild-type, TLR4(-/-), and Trif(-/-) (a TLR4 adapter protein) murine lung endothelial cells (MLECs) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from wild-type mice lungs and MLECs after hyperoxia. We confirmed that Hsp70 and TLR4 coimmunoprecipitate in lung tissue and MLECs. Hsp70-mediated NF-κB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif dependent and MyD88 independent. Hsp70-deficient mice have increased mortality during hyperoxia, and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild-type mice. To our knowledge, our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Oxigênio/administração & dosagem , RNA Mensageiro/biossíntese , Transdução de Sinais , Receptor 4 Toll-Like/genética
7.
Proc Natl Acad Sci U S A ; 108(9): 3636-41, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21321203

RESUMO

The brains of ataxia telangiectasia (AT) patients display an aberrant loss of Purkinje cells (PCs) that is postulated to contribute to the observed deficits in motor coordination as well as in learning and cognitive function. AT patients have mutations in the ataxia telangiectasia mutated (ATM) gene [Savitsky et al. (1995) Science 268:1749-1753]. However, in Atm-deficient mice, the neurological defects are limited, and the PCs are not deformed or lost as observed in AT patients [Barlow et al. (1996) Cell 86:159-171]. Here we report that PC-specific deletion of the mouse males absent on the first (mMof) gene (Cre(-)), which encodes a protein that specifically acetylates histone H4 at lysine 16 (H4K16ac) and influences ATM function, is critical for PC longevity. Mice deficient for PC-specific Mof display impaired motor coordination, ataxia, a backward-walking phenotype, and a reduced life span. Treatment of Mof(F/F)/Pcp2-Cre(+) mice with histone deacetylase inhibitors modestly prolongs PC survival and delays death. Therefore, Mof expression and H4K16 acetylation are essential for PC survival and function, and their absence leads to PC loss and cerebellar dysfunction similar to that observed in AT patients.


Assuntos
Ataxia Telangiectasia/genética , Ataxia Telangiectasia/fisiopatologia , Comportamento Animal , Deleção de Genes , Proteínas Nucleares/genética , Células de Purkinje/metabolismo , Caminhada , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Contagem de Células , Inibidores de Histona Desacetilases/farmacologia , Integrases/metabolismo , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Análise de Sobrevida
8.
Mutagenesis ; 28(3): 263-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23386701

RESUMO

Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof(Flox/Flox) (Mof (F/F)) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof(F/F)/Lck-Cre(+)) display a marked reduction in thymus size compared with Mof(F/F)/Lck-Cre(-) mice. In contrast, the spleen size of Mof(F/F)/Lck-Cre(+) mice was increased compared with control Mof(F/F)/Lck-Cre(-) mice. The thymus of Mof(F/F)/Lck-Cre(+) mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4(+)CD8(+) double-positive T-cell levels were reduced, whereas the immature CD4(-)CD8(-) double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44(-)CD25(+)) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof(F/F)/Lck-Cre(+) and Mof(F/F)/Lck-Cre(-) mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof(F/F)/Lck-Cre(+) mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof(F/F)/Lck-Cre(+) mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof(F/F)/Lck-Cre(-) mice. These observations suggest that Mof plays a critical role in T-cell differentiation and that depletion of Mof in T cells reduces T-cell numbers and, by an undefined mechanism, induces genomic instability in B cells through bystander mechanism. As a result, these mice have a shorter lifespan and reduced survival after irradiation.


Assuntos
Diferenciação Celular/genética , Deleção de Genes , Instabilidade Genômica , Histona Acetiltransferases/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Camundongos Knockout , Micronúcleos com Defeito Cromossômico , Tamanho do Órgão , Tolerância a Radiação/genética , Baço/metabolismo , Baço/patologia , Linfócitos T/imunologia , Timo/metabolismo , Timo/patologia , Proteína Supressora de Tumor p53/genética
9.
J Immunol ; 186(6): 3718-25, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21296977

RESUMO

Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1ß compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.


Assuntos
Envelhecimento/imunologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/fisiologia , Sepse/imunologia , Sepse/mortalidade , Envelhecimento/genética , Animais , Apoptose/genética , Apoptose/imunologia , Ceco , Feminino , Proteínas de Choque Térmico HSP70/deficiência , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ligadura , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/mortalidade , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/mortalidade , Infecções por Pseudomonas/patologia , Punções , Sepse/patologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/patologia
10.
Cancer Res ; 83(5): 657-666, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661847

RESUMO

Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Reparo do DNA , Dano ao DNA , Epigênese Genética
11.
Chembiochem ; 13(1): 97-104, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22134972

RESUMO

Heat shock proteins (HSPs) are known to protect cells from heat, oxidative stress, and the cytotoxic effects of drugs, and thus can enhance cancer cell survival. As a result, HSPs are a newly emerging class of protein targets for chemotherapy. Among the various HSPs, the HSP70 family is the most highly conserved and prevalent. Herein we describe the development of a ß-alanine rich linear polyamide that binds the GGA heat shock elements (HSEs) 3 and 4 in the HSP70 promoter in an unusual 1:1 mode and inhibits heat shock transcription factor 1 (HSF1) binding in vitro.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Nylons/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Humanos , Estrutura Molecular , Nylons/síntese química , Nylons/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Cells ; 11(11)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681523

RESUMO

Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.


Assuntos
Inteligência Artificial , Dispositivos Lab-On-A-Chip , Materiais Biocompatíveis , Microfluídica , Engenharia Tecidual
13.
iScience ; 25(4): 104142, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434547

RESUMO

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.

14.
Kidney Int ; 79(8): 861-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270764

RESUMO

Heat shock protein 70 (Hsp70) is a potent antiapoptotic agent. Here, we tested whether it directly regulates renal cell survival and organ function in a model of transient renal ischemia using Hsp70 knockout, heterozygous, and wild-type mice. The kidney cortical Hsp70 content inversely correlated with tubular injury, apoptosis, and organ dysfunction after injury. In knockout mice, ischemia caused changes in the activity of Akt and glycogen synthase kinase 3-ß (kinases that regulate the proapoptotic protein Bax), increased active Bax, and activated the proapoptotic protease caspase 3. As these changes were significantly reduced in the wild-type mice, we tested whether Hsp70 influences ischemia-induced apoptosis. An Hsp70 inducer, geranylgeranylacetone, increased Hsp70 expression in heterozygous and wild-type mice, and reduced both ischemic tubular injury and organ dysfunction. When administered after ischemia, this inducer also decreased tubular injury and organ failure in wild-type mice but did not protect the knockout mice. ATP depletion in vitro caused greater mitochondrial Bax accumulation and death in primary proximal tubule cells harvested from knockout compared with wild-type mice and altered serine phosphorylation of a Bax peptide at the Akt-specific target site. In contrast, lentiviral-mediated Hsp70 repletion decreased mitochondrial Bax accumulation and rescued Hsp70 knockout cells from death. Thus, increasing Hsp70 either before or after ischemic injury preserves renal function by attenuating acute kidney injury.


Assuntos
Proteínas de Choque Térmico HSP70/biossíntese , Isquemia/prevenção & controle , Rim/irrigação sanguínea , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diterpenos/administração & dosagem , Expressão Gênica , Técnicas de Inativação de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP70/genética , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Rim/efeitos dos fármacos , Rim/lesões , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Recombinantes/metabolismo , Proteína X Associada a bcl-2/metabolismo
15.
Bioorg Med Chem ; 19(16): 4710-20, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21798748

RESUMO

Quercetin is a flavonoid natural product, that is, found in many foods and has been found to have a wide range of medicinal effects. Though a number of quercetin binding proteins have been identified, there has been no systematic approach to identifying all potential targets of quercetin. We describe an O7-biotinylated derivative of quercetin (BioQ) that can act as a photoaffinity proteomics reagent for capturing quercetin binding proteins, which can then be identified by LC-MS/MS. BioQ was shown to inhibit heat induction of HSP70 with almost the same efficiency as quercetin, and to both inhibit and photocrosslink to CK2 kinase, a known target of quercetin involved in activation of the heat shock transcription factor. BioQ was also able to pull down a number of proteins from unheated and heated Jurkat cells following UV irradiation that could be detected by both silver staining and Western blot analysis with an anti-biotin antibody. Analysis of the protein bands by trypsinization and LC-MS/MS led to the identification of heat shock proteins HSP70 and HSP90 as possible quercetin target proteins, along with ubiquitin-activating enzyme, a spliceosomal protein, RuvB-like 2 ATPases, and eukaryotic translation initiation factor 3. In addition, a mitochondrial ATPase was identified that has been previously shown to be a target of quercetin. Most of the proteins identified have also been previously suggested to be potential anticancer targets, suggesting that quercetin's antitumor activity may be due to its ability to inhibit multiple target proteins.


Assuntos
Antioxidantes/química , Terapia de Alvo Molecular , Quercetina/química , Antioxidantes/farmacologia , Biotinilação , Caseína Quinase II/análise , Caseína Quinase II/química , Desenho de Fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células Jurkat , Estrutura Molecular , Marcadores de Fotoafinidade/metabolismo , Transporte Proteico/genética , Proteoma/metabolismo , Quercetina/farmacologia
16.
J Immunol ; 183(2): 1099-109, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19581626

RESUMO

Type I IFNs play a key role in linking the innate and adaptive arms of the immune system. Although produced rapidly in response to pathogens, IFNs are also produced at low levels in the absence of infection. In the present study, we demonstrate that constitutively produced IFNs are necessary in vivo to maintain dendritic cells in an "Ag presentation-competent" state. Conventional dendritic cells (cDCs) isolated from spleens of IFN-beta or IFNAR-deficient mice exhibit a highly impaired ability to present Ag and activate naive T cells. Microarray analysis of mRNA isolated from IFN-beta(-/-) and IFNAR(-/-) cDCs revealed diminished expression of two genes that encoded members of the heat shock protein 70 (Hsp70) family. Consistent with this observation, pharmacological inhibition of Hsp70 in cDCs from wild-type mice impaired their T cell stimulatory capacity. Similarly, the Ag presentation ability of splenic cDCs isolated from Hsp70.1/3(-/-) mice was also severely impaired in comparison to wild-type cDCs. Thus, constitutive IFN-beta expression regulates Hsp70 levels to help maintain dendritic cells in a competent state for efficient priming of effector T cells in vivo.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Regulação para Baixo , Interferon beta/fisiologia , Animais , Proteínas de Choque Térmico HSP70 , Fatores Imunológicos , Interferon beta/deficiência , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Baço/citologia , Linfócitos T/imunologia
17.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209979

RESUMO

Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.


Assuntos
Instabilidade Genômica , Código das Histonas , Animais , Reparo do DNA , Histonas/metabolismo , Humanos , Metilação
18.
Mol Cell Biol ; 41(7): e0008221, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33941620

RESUMO

Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.


Assuntos
Transtorno Autístico/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Instabilidade Genômica/fisiologia , Proteína BRCA1 , Reparo do DNA/fisiologia , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Proto-Oncogene Mas , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/genética
19.
Mol Cell Biol ; 40(18)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661120

RESUMO

The DNA and protein complex known as chromatin is subject to posttranslational modifications (PTMs) that regulate cellular functions such that PTM dysregulation can lead to disease, including cancer. One critical PTM is acetylation/deacetylation, which is being investigated as a means to develop targeted cancer therapies. The histone acetyltransferase (HAT) family of proteins performs histone acetylation. In humans, MOF (hMOF), a member of the MYST family of HATs, acetylates histone H4 at lysine 16 (H4K16ac). MOF-mediated acetylation plays a critical role in the DNA damage response (DDR) and embryonic stem cell development. Functionally, MOF is found in two distinct complexes: NSL (nonspecific lethal) in humans and MSL (male-specific lethal) in flies. The NSL complex is also able to acetylate additional histone H4 sites. Dysregulation of MOF activity occurs in multiple cancers, including ovarian cancer, medulloblastoma, breast cancer, colorectal cancer, and lung cancer. Bioinformatics analysis of KAT8, the gene encoding hMOF, indicated that it is highly overexpressed in kidney tumors as part of a concerted gene coexpression program that can support high levels of chromosome segregation and cell proliferation. The linkage between MOF and tumor proliferation suggests that there are additional functions of MOF that remain to be discovered.


Assuntos
Dano ao DNA , Células-Tronco Embrionárias/citologia , Histona Acetiltransferases/metabolismo , Acetilação , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional
20.
Cancer Res ; 67(7): 3010-7, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17409407

RESUMO

All cells have intricately coupled sensing and signaling mechanisms that regulate the cellular outcome following exposure to genotoxic agents such as ionizing radiation (IR). In the IR-induced signaling pathway, specific protein events, such as ataxia-telangiectasia mutated protein (ATM) activation and histone H2AX phosphorylation (gamma-H2AX), are mechanistically well characterized. How these mechanisms can be altered, especially by clinically relevant agents, is not clear. Here we show that hyperthermia, an effective radiosensitizer, can induce several steps associated with IR signaling in cells. Hyperthermia induces gamma-H2AX foci formation similar to foci formed in response to IR exposure, and heat-induced gamma-H2AX foci formation is dependent on ATM but independent of heat shock protein 70 expression. Hyperthermia also enhanced ATM kinase activity and increased cellular ATM autophosphorylation. The hyperthermia-induced increase in ATM phosphorylation was independent of Mre11 function. Similar to IR, hyperthermia also induced MDC1 foci formation; however, it did not induce all of the characteristic signals associated with irradiation because formation of 53BP1 and SMC1 foci was not observed in heated cells but occurred in irradiated cells. Additionally, induction of chromosomal DNA strand breaks was observed in IR-exposed but not in heated cells. These results indicate that hyperthermia activates signaling pathways that overlap with those activated by IR-induced DNA damage. Moreover, prior activation of ATM or other components of the IR-induced signaling pathway by heat may interfere with the normal IR-induced signaling required for chromosomal DNA double-strand break repair, thus resulting in increased cellular radiosensitivity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hipertermia Induzida , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular , Proteínas de Ligação a DNA/biossíntese , Embrião de Mamíferos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Proteínas de Choque Térmico HSP70/biossíntese , Resposta ao Choque Térmico/genética , Histonas/biossíntese , Humanos , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Transdução de Sinais , Proteínas Supressoras de Tumor/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA