Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7905): 310-315, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388217

RESUMO

Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genômica , Genoma , Humanos , Disseminação de Informação , Anotação de Sequência Molecular , National Library of Medicine (U.S.) , Estados Unidos
2.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849569

RESUMO

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Humanos , Animais , Camundongos , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Anotação de Sequência Molecular/métodos
3.
Nucleic Acids Res ; 52(D1): D891-D899, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953337

RESUMO

Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades. In recent years, there has been a dramatic shift in the genomic landscape, with a large increase in the number and phylogenetic breadth of high-quality reference genomes, alongside major advances in the pan-genome representations of higher species. In order to support these efforts and accelerate downstream research, Ensembl continues to focus on scaling for the rapid annotation of new genome assemblies, developing new methods for comparative analysis, and expanding the depth and quality of our genome annotations. This year we have continued our expansion to support global biodiversity research, doubling the number of annotated genomes we support on our Rapid Release site to over 1700, driven by our close collaboration with biodiversity projects such as Darwin Tree of Life. We have also strengthened support for key agricultural species, including the first regulatory builds for farmed animals, and have updated key tools and resources that support the global scientific community, notably the Ensembl Variant Effect Predictor. Ensembl data, software, and tools are freely available.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Genoma , Anotação de Sequência Molecular , Filogenia , Software , Humanos
4.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420896

RESUMO

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Assuntos
Biologia Computacional , Genoma Humano , Humanos , Animais , Camundongos , Anotação de Sequência Molecular , Biologia Computacional/métodos , Genoma Humano/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Bases de Dados Genéticas
5.
Nucleic Acids Res ; 51(D1): D933-D941, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318249

RESUMO

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.


Assuntos
Bases de Dados Genéticas , Software , Animais , Humanos , Anotação de Sequência Molecular , Genômica , Genoma
6.
Nucleic Acids Res ; 50(D1): D988-D995, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791404

RESUMO

Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Anotação de Sequência Molecular , Software , Animais , Biologia Computacional/classificação , Humanos
7.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33270111

RESUMO

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular/métodos , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Epidemias , Humanos , Internet , Camundongos , Pseudogenes/genética , RNA Longo não Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Transcrição Gênica/genética
8.
Genome Res ; 29(12): 2073-2087, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537640

RESUMO

The most widely appreciated role of DNA is to encode protein, yet the exact portion of the human genome that is translated remains to be ascertained. We previously developed PhyloCSF, a widely used tool to identify evolutionary signatures of protein-coding regions using multispecies genome alignments. Here, we present the first whole-genome PhyloCSF prediction tracks for human, mouse, chicken, fly, worm, and mosquito. We develop a workflow that uses machine learning to predict novel conserved protein-coding regions and efficiently guide their manual curation. We analyze more than 1000 high-scoring human PhyloCSF regions and confidently add 144 conserved protein-coding genes to the GENCODE gene set, as well as additional coding regions within 236 previously annotated protein-coding genes, and 169 pseudogenes, most of them disabled after primates diverged. The majority of these represent new discoveries, including 70 previously undetected protein-coding genes. The novel coding genes are additionally supported by single-nucleotide variant evidence indicative of continued purifying selection in the human lineage, coding-exon splicing evidence from new GENCODE transcripts using next-generation transcriptomic data sets, and mass spectrometry evidence of translation for several new genes. Our discoveries required simultaneous comparative annotation of other vertebrate genomes, which we show is essential to remove spurious ORFs and to distinguish coding from pseudogene regions. Our new coding regions help elucidate disease-associated regions by revealing that 118 GWAS variants previously thought to be noncoding are in fact protein altering. Altogether, our PhyloCSF data sets and algorithms will help researchers seeking to interpret these genomes, while our new annotations present exciting loci for further experimental characterization.


Assuntos
Éxons , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Análise de Sequência de DNA , Animais , Humanos , Pseudogenes
9.
Genome Res ; 29(11): 1919-1928, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31649060

RESUMO

The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo Pacific Biosciences (PacBio) assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb, which has been corroborated by a high-resolution linkage map. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few inter-chromosomal but frequent intra-chromosomal rearrangements. The improved assembly facilitates analysis of previously intractable large-scale structural variation, allowing, for example, the detection of a 7.8-Mb inversion on Chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation.


Assuntos
Mapeamento Cromossômico , Peixes/genética , Genoma , Adaptação Fisiológica/genética , Animais , Seleção Genética
10.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357393

RESUMO

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Assuntos
Bases de Dados Genéticas , Genoma Humano/genética , Genômica , Pseudogenes/genética , Animais , Biologia Computacional , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Software
11.
Nucleic Acids Res ; 46(D1): D221-D228, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126148

RESUMO

The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community.


Assuntos
Sequência Consenso , Bases de Dados Genéticas , Fases de Leitura Aberta , Animais , Curadoria de Dados/métodos , Curadoria de Dados/normas , Bases de Dados Genéticas/normas , Guias como Assunto , Humanos , Camundongos , Anotação de Sequência Molecular , National Library of Medicine (U.S.) , Estados Unidos , Interface Usuário-Computador
12.
Genome Res ; 26(1): 130-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26560630

RESUMO

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Suínos/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Sequência de Bases , Gatos/genética , Cães/genética , Feminino , Conversão Gênica , Expressão Gênica , Biblioteca Gênica , Ordem dos Genes , Humanos , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Nucleic Acids Res ; 42(Database issue): D865-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217909

RESUMO

The Consensus Coding Sequence (CCDS) project (http://www.ncbi.nlm.nih.gov/CCDS/) is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies by the National Center for Biotechnology Information (NCBI) and Ensembl genome annotation pipelines. Identical annotations that pass quality assurance tests are tracked with a stable identifier (CCDS ID). Members of the collaboration, who are from NCBI, the Wellcome Trust Sanger Institute and the University of California Santa Cruz, provide coordinated and continuous review of the dataset to ensure high-quality CCDS representations. We describe here the current status and recent growth in the CCDS dataset, as well as recent changes to the CCDS web and FTP sites. These changes include more explicit reporting about the NCBI and Ensembl annotation releases being compared, new search and display options, the addition of biologically descriptive information and our approach to representing genes for which support evidence is incomplete. We also present a summary of recent and future curation targets.


Assuntos
Bases de Dados Genéticas , Proteínas/genética , Animais , Éxons , Genômica , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Análise de Sequência
15.
Proc Natl Acad Sci U S A ; 110(40): 16115-20, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959890

RESUMO

Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid.


Assuntos
Amiloide/metabolismo , Amiloidose/fisiopatologia , Inflamação/complicações , Proteína Amiloide A Sérica/metabolismo , Amiloidose/etiologia , Animais , Vermelho Congo , Primers do DNA/genética , Doxiciclina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
16.
BMC Genomics ; 16: 442, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26055083

RESUMO

BACKGROUND: Amplified gene families on sex chromosomes can harbour genes with important biological functions, especially relating to fertility. The Y-linked heat shock transcription factor (HSFY) family has become amplified on the Y chromosome of the domestic pig (Sus scrofa), in an apparently independent event to an HSFY expansion on the Y chromosome of cattle (Bos taurus). Although the biological functions of HSFY genes are poorly understood, they appear to be involved in gametogenesis in a number of mammalian species, and, in cattle, HSFY gene copy number may correlate with levels of fertility. RESULTS: We have investigated the HSFY family in domestic pig, and other suid species including warthog, bushpig, babirusa and peccaries. The domestic pig contains at least two amplified variants of HSFY, distinguished predominantly by presence or absence of a SINE within the intron. Both these variants are expressed in testis, and both are present in approximately 50 copies each in a single cluster on the short arm of the Y. The longer form has multiple nonsense mutations rendering it likely non-functional, but many of the shorter forms still have coding potential. Other suid species also have these two variants of HSFY, and estimates of copy number suggest the HSFY family may have amplified independently twice during suid evolution. CONCLUSIONS: The HSFY genes have become amplified in multiple species lineages independently. HSFY is predominantly expressed in testis in domestic pig, a pattern conserved with cattle, in which HSFY may play a role in fertility. Further investigation of the potential associations of HSFY with fertility and testis development may be of agricultural interest.


Assuntos
Expansão das Repetições de DNA , Suínos/genética , Fatores de Transcrição/genética , Cromossomo Y/genética , Animais , Códon sem Sentido , Amplificação de Genes , Masculino , Família Multigênica , Elementos Nucleotídeos Curtos e Dispersos , Sus scrofa , Suínos/classificação , Testículo/metabolismo , Fatores de Transcrição/metabolismo
17.
Genome Res ; 22(9): 1760-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22955987

RESUMO

The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Anotação de Sequência Molecular , Animais , Biologia Computacional/métodos , DNA Complementar/química , DNA Complementar/genética , Evolução Molecular , Éxons , Loci Gênicos , Humanos , Internet , Modelos Moleculares , Fases de Leitura Aberta , Pseudogenes , Controle de Qualidade , Sítios de Splice de RNA , RNA Longo não Codificante , Reprodutibilidade dos Testes , Regiões não Traduzidas
18.
Am J Respir Crit Care Med ; 190(12): 1373-82, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25350863

RESUMO

RATIONALE: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell-derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. OBJECTIVES: To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. METHODS: We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirus-infected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. MEASUREMENTS AND MAIN RESULTS: IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. CONCLUSIONS: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33-responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbations.


Assuntos
Asma/etiologia , Inflamação/etiologia , Interleucinas/fisiologia , Infecções por Picornaviridae/complicações , Adulto , Asma/fisiopatologia , Asma/virologia , Células Cultivadas , Feminino , Humanos , Inflamação/fisiopatologia , Interleucina-13/fisiologia , Interleucina-33 , Interleucina-4/fisiologia , Interleucina-5/fisiologia , Subpopulações de Linfócitos/fisiologia , Masculino , Infecções por Picornaviridae/fisiopatologia , Rhinovirus , Índice de Gravidade de Doença , Linfócitos T/fisiologia , Células Th2/fisiologia , Carga Viral
19.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617209

RESUMO

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

20.
BMC Genomics ; 14: 332, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23676093

RESUMO

BACKGROUND: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS: This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Assuntos
Genômica , Imunidade/genética , Anotação de Sequência Molecular , Suínos/genética , Suínos/imunologia , Animais , Bovinos , Evolução Molecular , Duplicação Gênica , Humanos , Imunoglobulinas/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores KIR/genética , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA