Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 171: 45-55, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35780862

RESUMO

Congenital heart defects are the leading cause of right heart failure in pediatric patients. Implantation of c-kit+ cardiac-derived progenitor cells (CPCs) is being clinically evaluated to treat the failing right ventricle (RV), but faces limitations due to reduced transplant cell survival, low engraftment rates, and low retention. These limitations have been exacerbated due to the nature of cell delivery (narrow needles) and the non-optimal recipient microenvironment (reactive oxygen species (ROS)). Extracellular matrix (ECM) hydrogels derived from porcine left ventricular (LV) myocardium have emerged as a potential therapy to treat the ischemic LV and have shown promise as a vehicle to deliver cells to injured myocardium. However, no studies have evaluated the combination of an injectable biomaterial, such as an ECM hydrogel, in combination with cell therapy for treating RV failure. In this study we characterized LV and RV myocardial matrix (MM) hydrogels and performed in vitro evaluations of their potential to enhance CPC delivery, including resistance to forces experienced during injection and exposure to ROS, as well as their potential to enhance angiogenic paracrine signaling. While physical properties of the two hydrogels are similar, the decellularized LV and RV have distinct protein signatures. Both materials were equally effective in protecting CPCs against needle forces and ROS. CPCs encapsulated in either the LV MM or RV MM exhibited similar enhanced potential for angiogenic paracrine signaling when compared to CPCs in collagen. The RV MM without cells, however, likewise improved tube formation, suggesting it should also be evaluated as a potential standalone treatment.


Assuntos
Insuficiência Cardíaca , Hidrogéis , Animais , Materiais Biocompatíveis/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração , Hidrogéis/metabolismo , Miocárdio , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco , Suínos
2.
Circulation ; 138(24): 2809-2816, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30030418

RESUMO

BACKGROUND: Rodent hearts can regenerate myocardium lost to apical resection or myocardial infarction for up to 7 days after birth, but whether a similar window for myocardial regeneration also exists in large mammals is unknown. METHODS: Acute myocardial infarction (AMI) was surgically induced in neonatal pigs on postnatal days 1, 2, 3, 7, and 14 (ie, the P1, P2, P3, P7, and P14 groups, respectively). Cardiac systolic function was evaluated before AMI and at 30 days post-AMI via transthoracic echocardiography. Cardiomyocyte cell cycle activity was assessed via immunostaining for proliferation and mitosis markers, infarct size was evaluated histologically, and telomerase activity was measured by quantitative polymerase chain reaction. RESULTS: Systolic function at day 30 post-AMI was largely restored in P1 animals and partially restored in P2 animals, but significantly impaired when AMI was induced on postnatal day 3 or later. Hearts of P1 animals showed little evidence of scar formation or wall thinning on day 30 after AMI, with increased measures of cell-cycle activity seen 6 days after AMI (ie, postnatal day 7) compared with postnatal day 7 in noninfarcted hearts. CONCLUSIONS: The neonatal porcine heart is capable of regeneration after AMI during the first 2 days of life. This phenomenon is associated with induction of cardiomyocyte proliferation and is lost when cardiomyocytes exit the cell cycle shortly after birth.


Assuntos
Coração/fisiologia , Infarto do Miocárdio/patologia , Animais , Animais Recém-Nascidos , Aurora Quinase B/metabolismo , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Mitose , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Regeneração , Suínos , Telomerase/metabolismo
3.
JACC Basic Transl Sci ; 9(3): 322-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559631

RESUMO

This study evaluates the effectiveness of myocardial matrix (MM) hydrogels in mitigating negative right ventricular (RV) remodeling in a rat model of RV heart failure. The goal was to assess whether a hydrogel derived from either the right or left ventricle could promote cardiac repair. Injured rat right ventricles were injected with either RV-or left ventricular-derived MM hydrogels. Both hydrogels improved RV function and morphology and reduced negative remodeling. This study supports the potential of injectable biomaterial therapies for treating RV heart failure.

4.
Methods Mol Biol ; 2485: 255-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618911

RESUMO

Injectable biomaterials have been developed as potential minimally invasive therapies for treating myocardial infarction (MI) and heart failure. Christman et al. first showed that the injection of a biomaterial alone into rat myocardium can improve cardiac function after MI. More recently, hydrogel forms of decellularized extracellular matrix (ECM) materials have shown substantial promise. Here, we present the methods for fabricating an injectable cardiac-specific ECM biomaterial with demonstrated positive outcomes in small and large animal models for cardiac repair as well as initial safety in a Phase I clinical trial. This chapter also covers the methods for the injection of a biomaterial into rat myocardium using a surgical approach through the diaphragm. Although the methods shown here are for injection of an acellular biomaterial, cells or other therapeutics could also be added to the injection for testing other regenerative medicine strategies.


Assuntos
Infarto do Miocárdio , Miocárdio , Animais , Materiais Biocompatíveis/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Coração , Hidrogéis , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA