Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 185(1): 77-94, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995518

RESUMO

Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Sistema Nervoso Periférico/metabolismo
2.
PLoS Biol ; 21(12): e3002412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048352

RESUMO

Visual system function depends upon the elaboration of precise connections between retinal ganglion cell (RGC) axons and their central targets in the brain. Though some progress has been made in defining the molecules that regulate RGC connectivity required for the assembly and function of image-forming circuitry, surprisingly little is known about factors required for intrinsically photosensitive RGCs (ipRGCs) to target a principal component of the non-image-forming circuitry: the suprachiasmatic nucleus (SCN). Furthermore, the molecules required for forming circuits critical for circadian behaviors within the SCN are not known. We observe here that the adhesion molecule teneurin-3 (Tenm3) is highly expressed in vasoactive intestinal peptide (VIP) neurons located in the core region of the SCN. Since Tenm3 is required for other aspects of mammalian visual system development, we investigate roles for Tenm3 in regulating ipRGC-SCN connectivity and function. Our results show that Tenm3 negatively regulates association between VIP and arginine vasopressin (AVP) neurons within the SCN and is essential for M1 ipRGC axon innervation to the SCN. Specifically, in Tenm3-/- mice, we find a reduction in ventro-medial innervation to the SCN. Despite this reduction, Tenm3-/- mice have higher sensitivity to light and faster re-entrainment to phase advances, probably due to the increased association between VIP and AVP neurons. These data show that Tenm3 plays key roles in elaborating non-image-forming visual system circuitry and that it influences murine responses to phase-advancing light stimuli.


Assuntos
Axônios , Células Ganglionares da Retina , Animais , Camundongos , Axônios/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/metabolismo , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
3.
Exp Neurol ; 357: 114176, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870522

RESUMO

Visual impairment caused by retinal ganglion cell (RGC) axon damage or degeneration affects millions of individuals throughout the world. While some progress has been made in promoting long-distance RGC axon regrowth following injury, it remains unclear whether RGC axons can properly reconnect with their central targets to restore visual function. Additionally, the regenerative capacity of many RGC subtypes remains unknown in part due to a lack of available genetic tools. Here, we use a new mouse line, Sema6ACreERT2, that labels On direction-selective RGCs (oDSGCs) and characterize the survival and regenerative potential of these cells following optic nerve crush (ONC). In parallel, we use a previously characterized mouse line, Opn4CreERT2, to answer these same questions for M1 intrinsically photosensitive RGCs (ipRGCs). We find that both M1 ipRGCs and oDSGCs are resilient to injury but do not display long-distance axon regrowth following Lin28a overexpression. Unexpectedly, we found that M1 ipRGC, but not oDSGC, intraretinal axons exhibit ectopic branching and are misaligned near the optic disc between one- and three-weeks following injury. Additionally, we observe that numerous ectopic presynaptic specializations associate with misguided ipRGC intraretinal axons. Taken together, these results reveal insights into the injury response of M1 ipRGCs and oDSGCs, providing a foundation for future efforts seeking to restore visual system function following injury.


Assuntos
Traumatismos do Nervo Óptico , Semaforinas , Animais , Axônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Compressão Nervosa , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Retina , Células Ganglionares da Retina/metabolismo , Semaforinas/metabolismo
4.
Curr Opin Genet Dev ; 65: 14-21, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32485480

RESUMO

Molecules and cellular processes important for nervous system development can be repurposed in adulthood for the regulation of adult neurogenesis, synaptic plasticity, and neural regeneration following injury or degeneration. Efforts to recapitulate neural development in order to ameliorate injury or disease are promising, but these often fall short of functional restoration due in part to our incomplete understanding of how these damaged circuits initially developed. Despite these limitations, such strategies provide hope that harnessing developmental mechanisms can restore nervous system functions following damage or disease.


Assuntos
Regeneração Nervosa , Vias Neurais/fisiologia , Neurogênese , Plasticidade Neuronal , Adulto , Humanos
5.
J Comp Neurol ; 527(1): 282-296, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076594

RESUMO

The accessory optic system (AOS) detects retinal image slip and reports it to the oculomotor system for reflexive image stabilization. Here, we characterize two Cre lines that permit genetic access to AOS circuits responding to vertical motion. The first (Pcdh9-Cre) labels only one of the four subtypes of ON direction-selective retinal ganglion cells (ON-DS RGCs), those preferring ventral retinal motion. Their axons diverge from the optic tract just behind the chiasm and selectively innervate the medial terminal nucleus (MTN) of the AOS. Unlike most RGC subtypes examined, they survive after optic nerve crush. The second Cre-driver line (Pdzk1ip1-Cre) labels postsynaptic neurons in the MTN. These project predominantly to the other major terminal nucleus of the AOS, the nucleus of the optic tract (NOT). We find that the transmembrane protein semaphorin 6A (Sema6A) is required for the formation of axonal projections from the MTN to the NOT, just as it is for the retinal innervation of the MTN. These new tools permit manipulation of specific circuits in the AOS and show that Sema6A is required for establishing AOS connections in multiple locations.


Assuntos
Percepção de Movimento/fisiologia , Células Ganglionares da Retina/fisiologia , Semaforinas/metabolismo , Vias Visuais/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Trato Óptico/fisiologia
7.
J Cell Biol ; 207(2): 225-35, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25349260

RESUMO

Organogenesis and tumor metastasis involve the transformation of epithelia to highly motile mesenchymal-like cells. Septins are filamentous G proteins, which are overexpressed in metastatic carcinomas, but their functions in epithelial motility are unknown. Here, we show that a novel network of septin filaments underlies the organization of the transverse arc and radial (dorsal) stress fibers at the leading lamella of migrating renal epithelia. Surprisingly, septin depletion resulted in smaller and more transient and peripheral focal adhesions. This phenotype was accompanied by a highly disorganized lamellar actin network and rescued by the actin bundling protein α-actinin-1. We show that preassembled actin filaments are cross-linked directly by Septin 9 (SEPT9), whose expression is increased after induction of renal epithelial motility with the hepatocyte growth factor. Significantly, SEPT9 overexpression enhanced renal cell migration in 2D and 3D matrices, whereas SEPT9 knockdown decreased migration. These results suggest that septins promote epithelial motility by reinforcing the cross-linking of lamellar stress fibers and the stability of nascent focal adhesions.


Assuntos
Adesões Focais/metabolismo , Septinas/fisiologia , Fibras de Estresse/metabolismo , Animais , Movimento Celular , Células Cultivadas , Cães , Transição Epitelial-Mesenquimal , Adesões Focais/ultraestrutura , Rim/citologia , Rim/metabolismo , Septinas/análise , Septinas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA