Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257428

RESUMO

The implementation of power line communications (PLC) in smart electricity grids provides us with exciting opportunities for real-time cable monitoring. In particular, effective fault classification and estimation methods employing machine learning (ML) models have been proposed in the recent past. Often, the research works presenting PLC for ML-aided cable diagnostics are based on the study of synthetically generated channel data. In this work, we validate ML-aided diagnostics by integrating measured channels. Specifically, we consider the concatenation of clustering as a data pre-processing procedure and principal component analysis (PCA)-based dimension reduction for cable anomaly detection. Clustering and PCA are trained with measurement data when the PLC network is working under healthy conditions. A possible cable anomaly is then identified from the analysis of the PCA reconstruction error for a test sample. For the numerical evaluation of our scheme, we apply an experimental setup in which we introduce degradations to power cables. Our results show that the proposed anomaly detector is able to identify a cable degradation with high detection accuracy and low false alarm rate.

2.
Sensors (Basel) ; 22(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891000

RESUMO

Smart electrical grids rely on data communication to support their operation and on sensing for diagnostics and maintenance. Usually, the roles of communication and sensing equipment are different, i.e., communication equipment does not participate in sensing tasks and vice versa. Power line communication (PLC) offers a cost-effective solution for joint communication and sensing for smart grids. This is because the high-frequency PLC signals used for data communication also reveal detailed information regarding the health of the power lines that they travel through. Traditional PLC-based power line or cable diagnostic solutions are dependent on prior knowledge of the cable type, network topology, and/or characteristics of the anomalies. In this paper, we develop a power line sensing technique that can detect various types of cable anomalies without any prior domain knowledge. To this end, we design a solution that first uses time-series forecasting to predict the PLC channel state information at any given point in time based on its historical data. Under the approximation that the prediction error follows a Gaussian distribution, we then perform chi-squared statistical test to build an anomaly detector which identifies the occurrence of a cable fault. We demonstrate the effectiveness and universality of our sensing solution via evaluations conducted using both synthetic and real-world data extracted from low- and medium-voltage distribution networks.


Assuntos
Comunicação , Eletricidade , Previsões , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA