Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 43(1): 629-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25452341

RESUMO

A quadruplex sequence from the promoter region of the c-KIT gene forms a stable quadruplex, as characterized by crystallographic and NMR methods. Two new crystal structures are reported here, together with molecular dynamics simulation studies on these quadruplex crystal structures and an NMR structure. The new crystal structures, each in a distinct space group and lattice packing arrangement, together with the existing structures, demonstrate that the c-KIT quadruplex fold does not change with differing environments, suggesting that quadruplex topological dynamism is not a general phenomenon. The single and dinucleotide loops in these structures show a high degree of conformational flexibility within the three crystal forms and the NMR ensemble, with no evidence of clustering to particular conformers. This is in accord with the findings of high loop flexibility from the molecular dynamics studies. It is suggested that intramolecular quadruplexes can be grouped into two broad classes (i) those with at least one single-nucleotide loop, often showing singular topologies even though loops are highly flexible, and (ii) with all loops comprising at least two nucleotides, leading to topological dynamism. The loops can have more stable and less dynamic base-stacked secondary structures.


Assuntos
Quadruplex G , Proteínas Proto-Oncogênicas c-kit/genética , Modelos Moleculares , Regiões Promotoras Genéticas
2.
J Chem Inf Model ; 55(5): 1062-76, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25918827

RESUMO

In drug discovery, it is generally accepted that neighboring molecules in a given descriptor's space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as "activity cliffs". In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming cocrystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Relação Quantitativa Estrutura-Atividade , Cristalografia por Raios X , Bases de Dados de Produtos Farmacêuticos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular
3.
Biopolymers ; 99(12): 989-1005, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23828641

RESUMO

G-quadruplexes are higher-order four-stranded structures formed from repetitive guanine-containing tracts in nucleic acids. They comprise a core of stacked guanine-quartets linked by loops of length and sequence that vary with the context in which the quadruplex sequence occurs. Such sequences can be found in a number of genomic environments; at the telomeric ends of eukaryotic chromosomes, in promoter regions, in untranslated sequences and in open reading frames. Quadruplex formation can inhibit telomere maintenance, transcription and translation, especially when enhanced by quadruplex-binding small molecules, and quadruplex targeting is currently of considerable interest. The available experimental structural data shows that quadruplexes can have high conformational flexibility, especially in loop regions, which has hampered attempts to use high-throughput docking to find quadruplex-binding small-molecules with new scaffolds or to optimize existing ones with structure-based design methods. An approach to overcome the challenge of quadruplex conformational flexibility is presented here, which uses a combined multiple molecular dynamics and sampling approach. Two test small molecules have been used, RHPS4 and pyridostatin, which themselves have contrasting degrees of conformational flexibility.


Assuntos
Simulação de Dinâmica Molecular , Telômero , DNA/química , Quadruplex G
4.
Bioorg Med Chem Lett ; 23(16): 4719-22, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23810499

RESUMO

STAT3 (Signal Transducer and Activator of Transcription factor 3) is constitutively active in a wide range of human tumours. Stattic is one of the first non-peptidic small molecules reported to inhibit formation of the STAT3:STAT3 protein dimer complex. A mass spectrometry method has been developed to investigate the binding of Stattic to the un-phosphorylated STAT3ßtc (U-STAT3) protein. Alkylation of four cysteine residues has been observed with possible reaction at a fifth which could account for the mechanism of action.


Assuntos
Óxidos S-Cíclicos/química , Espectrometria de Massas , Alquilantes/química , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas/química , Fator de Transcrição STAT3/antagonistas & inibidores
5.
Bioorg Med Chem ; 21(20): 6162-70, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23769166

RESUMO

The synthesis together with biophysical and biological evaluation of a series of tetra-substituted naphthalene diimide (ND) compounds, are presented. These compounds are positional isomers of a recently-described series of quadruplex-binding ND derivatives, in which the two N-methyl-piperidine-alkyl side-chains have now been interchanged with the positions of side-chains bearing a range of end-groups. Molecular dynamics simulations of a pair of positional isomers are in accord with the quadruplex stabilization and biological data for these compounds. Analysis of structure-activity data indicates that for compounds where the side-chains are not of equivalent length then the positional isomers described here tend to have improved cell proliferation potency and in some instances, superior quadruplex stabilization ability.


Assuntos
Quadruplex G , Imidas/química , Imidas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imidas/síntese química , Isomerismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Naftalenos/síntese química , Relação Estrutura-Atividade
6.
Int J Biol Macromol ; 253(Pt 3): 126879, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709215

RESUMO

Hyaluronan (HA) has been recently identified as a key component of the densification of thoracolumbar fascia (TLF), a potential contributor to non-specific lower back pain (LBP) currently treated with manual therapy and systemic or local delivery of anti-inflammatory drugs. The aim of this study was to establish a novel animal model suitable for studying ultrasound-guided intrafascial injection prepared from HA with low and high Mw. Effects of these preparations on the profibrotic switch and mechanical properties of TLF were measured by qPCR and rheology, respectively, while their lubricating properties were evaluated by tribology. Rabbit proved to be a suitable model of TLF physiology due to its manageable size enabling both TLF extraction and in situ intrafascial injection. Surprisingly, the tribology showed that low Mw HA was a better lubricant than the high Mw HA. It was also better suited for intrafascial injection due to its lower injection force and ability to freely spread between TLF layers. No profibrotic effects of either HA preparation in the TLF were observed. The intrafascial application of HA with lower MW into the TLF appears to be a promising way how to increase the gliding of the fascial layers and target the myofascial LBP.


Assuntos
Fáscia , Ácido Hialurônico , Animais , Coelhos , Fáscia/fisiologia , Modelos Animais
7.
J Chem Inf Model ; 52(5): 1179-92, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22500887

RESUMO

Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Simulação de Dinâmica Molecular , Fator de Transcrição STAT3/metabolismo , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Humanos , Modelos Moleculares , Mutação , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Água/química
8.
Biomolecules ; 12(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35053164

RESUMO

Nonwoven textiles are used extensively in the field of medicine, including wound healing, but these textiles are mostly from conventional nondegradable materials, e.g., cotton or synthetic polymers such as polypropylene. Therefore, we aimed to develop nonwoven textiles from hyaluronan (HA), a biocompatible, biodegradable and nontoxic polysaccharide naturally present in the human body. For this purpose, we used a process based on wet spinning HA into a nonstationary coagulation bath combined with the wet-laid textile technology. The obtained HA nonwoven textiles are soft, flexible and paper like. Their mechanical properties, handling and hydration depend on the microscale fibre structure, which is tuneable by selected process parameters. Cell viability testing on two relevant cell lines (3T3, HaCaT) demonstrated that the textiles are not cytotoxic, while the monocyte activation test ruled out pyrogenicity. Biocompatibility, biodegradability and their high capacity for moisture absorption make HA nonwoven textiles a promising material for applications in the field of wound healing, both for topical and internal use. The beneficial effect of HA in the process of wound healing is well known and the form of a nonwoven textile should enable convenient handling and application to various types of wounds.


Assuntos
Bandagens , Ácido Hialurônico/química , Teste de Materiais , Têxteis , Cicatrização , Células 3T3 , Animais , Humanos , Camundongos
9.
Chem Commun (Camb) ; 50(14): 1704-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24394582

RESUMO

We report here on the screening of a fragment library against a G-quadruplex element in the human c-MYC promoter. The ten fragment hits had significant concordance between a biophysical assay, in silico modelling and c-MYC expression inhibition, highlighting the feasibility of applying a fragment-based approach to the targeting of a quadruplex nucleic acid.


Assuntos
Quadruplex G , Proteínas Proto-Oncogênicas c-myc/genética , Simulação por Computador , Humanos , Modelos Moleculares , Regiões Promotoras Genéticas/genética
10.
FEBS Lett ; 587(7): 833-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23434585

RESUMO

The STAT3 transcription factor plays a central role in a wide range of cancer types where it is over-expressed. Previously, phosphorylation of this protein was thought to be a prerequisite for direct binding to DNA. However, we have now shown complete binding of a purified unphosphorylated STAT3 (uSTAT3) core directly to M67 DNA, the high affinity STAT3 target DNA sequence, by a protein electrophoretic mobility shift assay (PEMSA). Binding to M67 DNA was inhibited by addition of increasing concentrations of a phosphotyrosyl peptide. X-ray crystallography demonstrates one mode of binding that is similar to that known for the STAT3 core phosphorylated at Y705.


Assuntos
DNA/química , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Dicroísmo Circular , Cristalografia por Raios X , DNA/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA