Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Pharm ; 13(1): 223-31, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26618718

RESUMO

Amorphous solid dispersions (ASDs) are of great interest as enabling formulations because of their ability to increase the bioavailability of poorly soluble drugs. However, the dissolution of these formulations under nonsink dissolution conditions results in highly supersaturated drug solutions that can undergo different types of phase transitions. The purpose of this study was to characterize the phase behavior of solutions resulting from the dissolution of model ASDs as well as the degree of supersaturation attained. Danazol was chosen as a poorly water-soluble model drug, and three polymers were used to form the dispersions: polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and hydroxypropylmethyl cellulose acetate succinate (HPMCAS). Dissolution studies were carried out under nonsink conditions, and solution phase behavior was characterized using several orthogonal techniques. It was found that liquid-liquid phase separation (LLPS) occurred following dissolution and prior to crystallization for most of the dispersions. Using flux measurements, it was further observed that the maximum attainable supersaturation following dissolution was equivalent to the amorphous solubility. The dissolution of the ASDs led to sustained supersaturation, the duration of which varied depending on the drug loading and the type of polymer used in the formulation. The overall supersaturation profile observed thus depended on a complex interplay between dissolution rate, polymer type, drug loading, and the kinetics of crystallization.


Assuntos
Danazol/química , Polímeros/química , Cristalização , Derivados da Hipromelose/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Povidona/química
2.
Pharm Res ; 33(5): 1276-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26892947

RESUMO

PURPOSE: Excipients are essential for solubility enhancing formulations. Hence it is important to understand how additives impact key solution properties, particularly when supersaturated solutions are generated by dissolution of the solubility enhancing formulation. Herein, the impact of different concentrations of dissolved polymers on the thermodynamic and kinetic properties of supersaturated solutions of danazol were investigated. METHODS: A variety of experimental techniques was used, including nanoparticle tracking analysis, fluorescence and ultraviolet spectroscopy and flux measurements to characterize the solution phase behavior. RESULTS: Neither the crystalline nor amorphous solubility of danazol was impacted by common amorphous solid dispersion polymers, polyvinylpyrrolidone, hydroxypropylmethyl cellulose (HPMC) or HPMC-acetate succinate. Consequently, the maximum membrane transport rate was limited only by the amorphous solubility, and not by the presence of the polymers. The polymers were able to inhibit crystallization to some extent at concentrations as low as 1 µg/mL, with the maximum effectiveness being reached at 10 µg/mL. Aqueous danazol solutions formed a drug-rich phase with a mean size of 250 nm when the concentration exceeded the amorphous solubility, and the polymers modified the surface properties of this drug-rich phase. CONCLUSIONS: The phase behavior of supersaturated solutions is complex and the kinetics of phase transformations can be substantially modified by polymeric additives present at low concentrations. However, fortunately, these additives do not appear to impact the bulk thermodynamic properties of the solution, thus enabling supersaturated solutions, which provide enhanced membrane transport relative to saturated solutions to be generated.


Assuntos
Danazol/química , Antagonistas de Estrogênios/química , Excipientes/química , Cristalização , Derivados da Hipromelose/química , Cinética , Metilcelulose/análogos & derivados , Metilcelulose/química , Tamanho da Partícula , Transição de Fase , Povidona/química , Solubilidade , Soluções/química
3.
Pharm Res ; 32(1): 248-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25037862

RESUMO

PURPOSE: Surface area and surface energy of pharmaceutical powders are affected by milling and may influence formulation, performance and handling. This study aims to decouple the contribution of surface area and surface energy, and to quantify each of these factors, on cohesion. METHODS: Mefenamic acid was processed by cryogenic milling. Surface energy heterogeneity was determined using a Surface Energy Analyser (SEA) and cohesion measured using a uniaxial compression test. To decouple the surface area and surface energy contributions, milled mefenamic acid was "normalised" by silanisation with methyl groups, confirmed using X-ray Photoelectron Spectroscopy. RESULTS: Both dispersive and acid-base surface energies were found to increase with increasing milling time. Cohesion was also found to increase with increasing milling time. Silanised mefenamic acid possessed a homogenous surface with a surface energy of 33.1 ± 1.4 mJ/m(2) , for all milled samples. The cohesion for silanised mefenamic acid was greatly reduced, and the difference in the cohesion can be attributed solely to the increase in surface area. For mefenamic acid, the contribution from surface energy and surface area on cohesion was quantified to be 57% and 43%, respectively. CONCLUSIONS: Here, we report an approach for decoupling and quantifying the contribution from surface area and surface energy on powder cohesion.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ácido Mefenâmico/química , Tecnologia Farmacêutica/métodos , Cristalização , Excipientes/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Pós , Silanos/química , Propriedades de Superfície
4.
Mol Pharm ; 11(9): 3027-38, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25105204

RESUMO

The phase behavior of supersaturated solutions of a relatively hydrophobic drug, danazol, was studied in the absence and presence of polymeric additives. To differentiate between phase separation to a noncrystalline phase and phase separation to a crystalline phase, an environmentally sensitive fluorescent probe was employed. Induction times for crystallization in the presence and absence of polymeric additives were studied using a combination of ultraviolet and fluorescence spectroscopy. It was found that, when danazol was added to aqueous media at concentrations above the amorphous solubility, liquid-liquid phase separation was briefly observed prior to crystallization, resulting in a short-lived, drug-rich noncrystalline danazol phase with an initial size of around 500 nm. The addition of polymers was found to greatly extend the lifetime of the supersaturated two phase system, delaying the onset of crystallization from a few minutes to a few hours. Below a certain threshold danazol concentration, found to represent the amorphous solubility, only crystallization was observed. Thus, although the addition of polymers was unable to prevent danazol from precipitating once a threshold concentration was exceeded, they did inhibit crystallization, leading to a solution with prolonged supersaturation. This observation highlights the need to determine the structure of the precipitating phase, since it is linked to the resultant solution concentration time profile.


Assuntos
Danazol/química , Polímeros/química , Soluções/química , Água/química , Precipitação Química , Cristalização/métodos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solubilidade
5.
AAPS PharmSciTech ; 15(6): 1516-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25037732

RESUMO

Amorphous drugs are used to improve the solubility, dissolution, and bioavailability of drugs. However, these metastable forms of drugs can transform into more stable, less soluble, crystalline counterparts. This study reports a method for evaluating the effect of commonly used excipients on the surface crystallization of amorphous drugs and its application to two model amorphous compounds, nifedipine and indomethacin. In this method, amorphous samples of the drugs were covered by excipients and stored in controlled environments. An inverted light microscope was used to measure in real time the rates of surface crystal nucleation and growth. For nifedipine, vacuum-dried microcrystalline cellulose and lactose monohydrate increased the nucleation rate of the ß polymorph from two to five times when samples were stored in a desiccator, while D-mannitol and magnesium stearate increased the nucleation rate 50 times. At 50% relative humidity, the nucleation rates were further increased, suggesting that moisture played an important role in the crystallization caused by the excipients. The effect of excipients on the crystal growth rate was not significant, suggesting that contact with excipients influences the physical stability of amorphous nifedipine mainly through the effect on crystal nucleation. This effect seems to be drug specific because for two polymorphs of indomethacin, no significant change in the nucleation rate was observed under the excipients.


Assuntos
Celulose/química , Excipientes/química , Indometacina/química , Lactose/química , Manitol/química , Nifedipino/química , Ácidos Esteáricos/química , Química Farmacêutica , Cristalização , Umidade , Cinética , Propriedades de Superfície , Comprimidos , Tecnologia Farmacêutica/métodos , Água/química
6.
Pharm Dev Technol ; 15(3): 266-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22716467

RESUMO

PEGylated poly(carboxylic acid)s, PEG-b-PCAs, were evaluated as additives for solubilized oral formulations of weakly acidic compounds. Micelles of poly(ethylene glycol)-block-poly(acrylic acid), PEG-b-PAA, and poly(ethylene glycol)-block-poly(methacrylic acid), PEG-b-PMAA, were prepared. Fluorescence spectroscopy and dynamic light scattering revealed that both polymers assemble into nanoscopic structures (< 200 nm) in acidic media and exhibit pH-sensitive colloidal phase behavior. Using a solvent evaporation technique, the block copolymers and corresponding PCA homopolymers were incorporated into PEG3350-based solid dispersions. The kinetic solubility profile of a BMS compound, BMS-A (Seq ~ 12.5 µg/mL at pH 1.1) in 0.1 N HCl was monitored as a function of polymer composition. While BMS-A precipitated rapidly in 0.1 N HCl in the absence of PEG-b-PCAs, a supersaturated level of ca. 400 µg/mL was maintained for variable lengths of time in the presence of PEG-b-PCAs. Although the kinetic solubility of BMS-A was also enhanced in the presence of the PCA homopolymers, the relative magnitude and duration of supersaturation as a function of polymer composition suggests that micellar solubilization, rather than specific interaction, contributes to enhanced solubility of BMS-A in 0.1 N HCl. Under acidic conditions, pH-responsive PEG-b-PCAs may offer the kinetic supersaturation necessary to minimize precipitation of compounds which have limited solubility in acidic milieu.


Assuntos
Ácidos Carboxílicos/química , Química Farmacêutica/métodos , Micelas , Polietilenoglicóis/química , Tensoativos/química , Ácidos Carboxílicos/farmacocinética , Coloides , Concentração de Íons de Hidrogênio , Polietilenoglicóis/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Solubilidade , Tensoativos/farmacocinética , Difração de Raios X/métodos
7.
Int J Pharm ; 357(1-2): 228-34, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18374527

RESUMO

The purpose of this study was (a) to evaluate the factors affecting the form conversion of anhydrous lactose to the monohydrate form during wet granulation using water as the granulating agent and (b) study the effect of lactose form conversion on its compaction properties. A two-level full factorial design with two center points was used to evaluate the factors affecting form conversion. The three variables evaluated were percentage of microcrystalline cellulose (low 0 and high 20), water to intragranular solids ratio (low 0.10 and high 0.18) and drying conditions (tray drying and fluid bed drying). The presence of microcrystalline cellulose in the formulation did not provide any benefit in reducing the percent lactose conversion. But, the conversion was significantly reduced by decreasing the amount of water added to the granulation and/or by decreasing the drying time, using a fluid bed dryer compared to a tray dryer. In the second part of the study, complete conversion of the anhydrous lactose to monohydrate was achieved by storing the anhydrous form under 25 degrees C/97% RH for 4 weeks. Physical characterization (compactibility, surface area and surface morphology) was performed on the form converted material and compared to the as received anhydrous lactose. The physical characterization results indicated that even though anhydrous lactose undergoes complete form conversion to monohydrate form under high humidity and/or during wet granulation, it retains its inherent higher as received material compactibility and the BET surface area and porosity of the form converted material are higher than that of the as received anhydrous lactose.


Assuntos
Lactose/química , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Composição de Medicamentos , Armazenamento de Medicamentos , Umidade , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Pós , Pressão , Propriedades de Superfície , Termogravimetria , Água , Difração de Raios X
8.
J Pharm Sci ; 96(5): 948-59, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17455349

RESUMO

There are many reports in the literature referring to the effect of microenvironmental pH on solid dosage form performance, particularly stability and dissolution profiles. Several techniques have been proposed for the measurement of the microenvironmental pH. Those techniques use certain assumptions and approximations and many of them employ a solution calibration curve of a probe to predict hydrogen ion activity in a substantially dry solid. Despite the limitation of the methodology, it is clear from the literature that microenvironmental pH has a significant impact on stability of compounds which demonstrate pH dependent stability in solution. Degradation kinetics of such compounds, and in some cases degradation profile as well, are dependent on the microenvironmental pH of the solid. Modulation of the microenvironmental pH through the use of pH modifiers can hence prove to be a very effective tool in maximizing solid dosage form stability. Judicial selection of the appropriate pH modifier, its concentration and the manufacturing process used to incorporate the pH modifier is necessary to enhance stability. Control of microenvironmental pH to maximize stability can be achieved without the use of pH modifier in some cases if an appropriate counter ion is used to provide an inherently optimal pH for the salt. Microenvironmental pH modulation was also shown to control the dissolution profile of both immediate and controlled release dosage forms of compounds with pH dependent solubility. The pH modifiers have been used in conjunction with high energy or salt forms in immediate release formulations to minimize the precipitation of the less soluble free form during initial dissolution. Additionally, pH modifiers were utilized in controlled release dosage forms of weakly basic drugs which exhibit diminished release in dissolution media with high pH. The incorporation of acidic pH modifiers in the controlled release formulation increases the solubility of the basic drug even as the high pH dissolution medium enters into the dosage form hence increasing drug release rate.


Assuntos
Formas de Dosagem , Portadores de Fármacos , Excipientes/química , Polímeros/química , Química Farmacêutica , Preparações de Ação Retardada , Composição de Medicamentos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Cinética , Microesferas , Modelos Químicos , Solubilidade , Tecnologia Farmacêutica/métodos
9.
AAPS J ; 19(5): 1348-1358, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28681160

RESUMO

This article discusses the range of outcomes from biopharmaceutical studies of specific modified release (MR) product examples in preclinical models and humans. It touches upon five major biopharmaceutical areas for MR drug products: (1) evidence for regional permeability throughout the GI tract, (2) susceptibility to food-effect, (3) susceptibility to pH-effect, (4) impact of chronopharmacology in designing MR products, and (5) implications to narrow therapeutic index products. Robust bioperformance requires that product quality is met through a thorough understanding of the appropriate critical quality attributes that ensure reliable and robust manufacture of a MR dosage form. The quality-by-design (QbD) aspects of MR dosage form design and development are discussed with the emphasis on the regulatory view of the data required to support dosage form development.


Assuntos
Biofarmácia , Descoberta de Drogas , Administração Oral , Química Farmacêutica , Liberação Controlada de Fármacos , Interações Alimento-Droga , Humanos , Concentração de Íons de Hidrogênio
10.
J Pharm Sci ; 105(4): 1478-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921118

RESUMO

BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl.


Assuntos
Imidazóis/química , Sulfonas/química , Cápsulas , Desidratação , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Comprimidos
11.
Int J Pharm ; 496(2): 407-13, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26456293

RESUMO

This study proposes an approach for quantifying the amount of pharmaceutical powder adhering (quality attribute) to the metals surfaces. The effect of surface roughness (detrimental attribute) on the amount of powder sticking to a stainless steel surface for a model pharmaceutical material is also qualitatively determined. Methodology to quantify powder adhesion to surfaces utilises a texture analyser and HPLC. The approach was validated to qualitatively investigate effect of metal surface roughness on adhesion of mefenamic acid. An increase in metal surface roughness resulted in an increase in cohesion. By increasing the average roughness from 289nm to 407nm, a 2.5 fold increase in amount adhering to metal was observed, highlighting the role of surface roughness on adhesion. The simplicity in experimental design with no requirement of specialised equipment and operational ease makes the approach very easy to adopt. Further, ease in interpreting results makes this methodology very attractive.


Assuntos
Ácido Mefenâmico/química , Adesividade , Cristalização , Nanoestruturas/química , Tamanho da Partícula , Pós , Aço Inoxidável , Propriedades de Superfície
12.
Int J Pharm ; 495(1): 234-240, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26315119

RESUMO

Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.


Assuntos
Alanina/análogos & derivados , Tecnologia Farmacêutica/métodos , Temperatura , Triazinas/química , Alanina/química , Varredura Diferencial de Calorimetria , Cristalização , Tamanho da Partícula , Propriedades de Superfície
13.
Curr Opin Drug Discov Devel ; 7(1): 75-85, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14982151

RESUMO

Drug 'developability' assessment has become an increasingly important addition to traditional drug efficacy and toxicity evaluations, as pharmaceutical scientists strive to accelerate drug discovery and development processes in a time- and cost-effective manner. The fraction of drug absorbed and the maximum absorbable dose (MAD) can be estimated from in vivo clinical pharmacokinetics, mass balance studies or in vivo drug permeability in humans by different calculation methods. Unfortunately, in vivo data are usually unavailable at the early stages of drug discovery and development, and in vitro screening for the permeability, solubility, activity and toxicity of a drug has become a routine measurement in drug discovery and development. These in vitro data could be used to predict drug 'developability' with different calculation methods before selecting candidates for clinical evaluation. The fraction of drug absorbed in human could be predicted by in vivo human permeability or in vitro Caco2 permeability. For example, if drug permeability in Caco2 cells reaches 13.3 to 18.1 x 10(-6) cm/s, its predicted in vivo permeability in humans would reach 2 x 10(-4) cm/s, and its predicted fraction of drug absorbed would be > 90%, which is defined as highly permeable. The MAD could also be predicted with in vitro permeability, or calculated absorption rate constant. In addition, in vitro solubility and permeability data can also be used for the biopharmaceutics classification system (BCS) and, subsequently, to direct formulation optimization strategies. If drug 'developability' becomes an obstacle for drug delivery based on these in vitro data and predictions at the early stages of drug discovery and development, options such as prodrug approaches could be explored to enhance drug 'developability', in addition to different formulation methods. Therefore, in vitro absorption testing is a highly valuable tool in the decision-making process to select candidates for in vivo clinical studies at early-stage drug discovery and development.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Transporte Biológico , Células CACO-2 , Humanos , Técnicas In Vitro , Absorção Intestinal , Permeabilidade , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Solubilidade , Resultado do Tratamento
14.
J Pharm Sci ; 91(3): 785-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11920764

RESUMO

The purpose of this study was to examine the potential of the nasal route for the systemic delivery of the poorly water-soluble drug testosterone (TS) using a water-soluble prodrug, TS 17beta-N,N-dimethylglycinate hydrochloride. The physicochemical properties of the prodrug, in vitro hydrolysis in human liver homogenate, and in vivo nasal and intravenous experiments were performed in rats. The aqueous solubility of the prodrug was more than 100 mg/mL, compared with 0.01 mg/mL for TS, and its log partition coefficient between 0.05 M, phosphate buffer (pH 6) and octanol was 2.4. The prodrug was found to generate TS in 33% human liver homogenate and was absorbed from the nasal cavity rapidly and quantitatively. The bioavailabilities of both the prodrug and TS after nasal administration of the prodrug were similar to that after equivalent intravenous doses. These studies in rats suggest that this water-soluble prodrug of TS may have therapeutic utility for the management of TS deficiency.


Assuntos
Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Testosterona/administração & dosagem , Testosterona/farmacocinética , Administração Intranasal , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Humanos , Técnicas In Vitro , Injeções Intravenosas , Fígado/metabolismo , Masculino , Pró-Fármacos/síntese química , Ratos , Ratos Sprague-Dawley , Solubilidade , Testosterona/análogos & derivados , Testosterona/síntese química
15.
J Pharm Pharmacol ; 56(10): 1211-5, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15482634

RESUMO

The use of metered-dose inhalers for the delivery of albuterol, a beta2-selective adrenergic agonist, is associated with drawbacks, especially in children and the elderly. This investigation was designed to assess the effectiveness of albuterol delivered intranasally and to compare this delivery route with intratracheal and intravenous delivery. Three parameters of pulmonary function (peak maximal expiratory flow, maximal expiratory flow at 50% vital capacity, and total lung capacity) in anaesthetized, artificially ventilated guinea pigs were used to determine the degree of protection produced by albuterol against bronchoconstrictor responses provoked by acetylcholine. The heart rate was also measured. Although intranasal albuterol induced a slower protective action during the very initial phase of absorption, the drug was shown to be equally effective when administered either intranasally or intratracheally. In contrast, despite a significant effect initially in the case of intravenous albuterol, its ability to influence pulmonary function faded rather rapidly. No statistically significant differences in heart rate could be detected among the different treatment groups. In conclusion, intranasal albuterol may offer an alternative to metered-dose inhalers for the treatment of acute bronchospasm and for prevention of exercise-induced asthma, especially for children and the elderly.


Assuntos
Agonistas Adrenérgicos beta/administração & dosagem , Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Acetilcolina , Administração Intranasal , Animais , Broncoconstrição/efeitos dos fármacos , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Injeções Intravenosas , Masculino , Fluxo Expiratório Máximo/efeitos dos fármacos , Pico do Fluxo Expiratório/efeitos dos fármacos , Capacidade Pulmonar Total/efeitos dos fármacos , Traqueia , Vasodilatadores
16.
Drug Dev Ind Pharm ; 21(3): 361-368, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-36600543

RESUMO

The performance of a modified V-shaped solids mixer, i.e., uneven leg or offset angle, has been reassessed by using a binary cohesive mixture, made up of 1% sodium salicylate and 99% microcry stalline cellulose, as the mixing system. The performance of the mixer was defined in terms of relative standard deviation from the measured mean. The results generated from the present study were compared with the previously published data generated by using a free-flow mixing system. It appears in the present study that the free-flowing, segregating materials may be used as a mixing model to predict the trend of the performance of a modified V-shaped blender for the non-free-flowing, cohesive materials. However, in the equilibrium state, the non-free-flowing, cohesive mixture has much better quality of the mix than that of the free-flowing, segregating system in terms of the scale and intensity of segregation.

17.
AAPS PharmSciTech ; 5(3): e38, 2004 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15760071

RESUMO

The effect of anhydrous lactose particle size distribution on its performance in the wet granulation process was evaluated. Three grades of anhydrous lactose were used in the study: "as is" manufacturer grade and 2 particle size fractions obtained by screening of the 60M lactose. Particle growth behavior of the 3 lactose grades was evaluated in a high shear mixer. Compactibility and porosity of the resulting granules were also evaluated. A uniaxial compression test on moist agglomerates of the 3 lactose grades was performed in an attempt to explain the mechanism of particle size effect observed in the high shear mixer. Particle growth of anhydrous lactose in the high shear mixer was inversely related to the particle size of the starting material. In addition, granulation manufactured using the grade with the smallest particle size was more porous and demonstrated enhanced compactibility compared with the other grades. Compacts with similar porosity and low liquid saturation demonstrated brittle behavior and their breakage strength was inversely related to lactose particle size in the uniaxial compression test, suggesting that material with smaller particle size may exhibit more pronounced nucleation behavior during wet granulation. On the other hand, compacts prepared at higher liquid saturation and similar compression force exhibited more plastic behavior and showed lower yield stress for the grade with smallest particle size. The lower yield stress of compacts prepared with this grade may indicate a higher coalescence tendency for its granules during wet granulation.


Assuntos
Preparações Farmacêuticas/química , Força Compressiva , Lactose/química , Tamanho da Partícula , Porosidade , Pós , Estresse Mecânico , Molhabilidade
18.
Int J Pharm ; 475(1-2): 592-6, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25223493

RESUMO

This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.


Assuntos
Química Farmacêutica/métodos , Ácido Mefenâmico/química , Pós/química , Silanos/química , Tamanho da Partícula , Propriedades de Superfície
19.
Int J Pharm ; 472(1-2): 140-7, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24928138

RESUMO

The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals.


Assuntos
Pós/química , Anti-Inflamatórios não Esteroides/química , Química Farmacêutica , Cristalização , Ácido Mefenâmico/química , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
20.
J Pharm Sci ; 102(11): 3867-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037829

RESUMO

Pharmaceutical nanomaterials (NMs) encompass a wide variety of materials including drug nanoparticles (NPs), which can be amorphous or crystalline; or nanoparticulate drug delivery systems, such as micelles, microemulsions, liposomes, drug-polymer conjugates, and antibody-drug conjugates. These NMs are either transient or persistent-depending on whether the integrity of their structure and size is maintained until reaching the site of drug action. Examples of several approved drug products are included as pharmaceutical nanoparticulate systems along with a commentary on the current development issues and paradigms for various categories of NPs. This commentary discusses the preparation of nanoparticulate systems for commercial development, and the biopharmaceutical and pharmacokinetic advantages of these systems. A criterion of criticality is defined that incorporates the structure, in addition to size requirement of pharmaceutical NPs to identify systems that may require special development and regulatory considerations.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Polímeros/química , Aprovação de Drogas , Composição de Medicamentos/métodos , Emulsões/química , Humanos , Micelas , Nanotecnologia/métodos , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA