Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(7): 1537-1550.e19, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835032

RESUMO

Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm. We report cryo-EM structures of core and complete vRNAP enzymes from Vaccinia virus at 2.8 Å resolution. The vRNAP core enzyme resembles eukaryotic RNA polymerase II (Pol II) but also reveals many virus-specific features, including the transcription factor Rap94. The complete enzyme additionally contains the transcription factor VETF, the mRNA processing factors VTF/CE and NPH-I, the viral core protein E11, and host tRNAGln. This complex can carry out the entire early transcription cycle. The structures show that Rap94 partially resembles the Pol II initiation factor TFIIB, that the vRNAP subunit Rpo30 resembles the Pol II elongation factor TFIIS, and that NPH-I resembles chromatin remodeling enzymes. Together with the accompanying paper (Hillen et al., 2019), these results provide the basis for unraveling the mechanisms of poxvirus transcription and RNA processing.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Fatores de Transcrição/química , Vaccinia virus/ultraestrutura , Proteínas Virais/química , Microscopia Crioeletrônica , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Imagem Individual de Molécula , Vaccinia virus/genética , Vaccinia virus/metabolismo
2.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502422

RESUMO

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genética
3.
Proc Natl Acad Sci U S A ; 115(3): E382-E389, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298914

RESUMO

Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.


Assuntos
Códon de Terminação/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Nucleotídeos , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
4.
RNA ; 23(2): 142-152, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872161

RESUMO

In chronic kidney disease (CKD), the decline in the glomerular filtration rate is associated with increased morbidity and mortality and thus poses a major challenge for healthcare systems. While the contribution of tissue-derived miRNAs and mRNAs to CKD progression has been extensively studied, little is known about the role of urinary exosomes and their association with CKD. Exosomes are small, membrane-derived endocytic vesicles that contribute to cell-to-cell communication and are present in various body fluids, such as blood or urine. Next-generation sequencing approaches have revealed that exosomes are enriched in noncoding RNAs and thus exhibit great potential for sensitive nucleic acid biomarkers in various human diseases. Therefore, in this study we aimed to identify urinary exosomal ncRNAs as novel biomarkers for diagnosis of CKD. Since up to now most approaches have focused on the class of miRNAs, we extended our analysis to several other noncoding RNA classes, such as tRNAs, tRNA fragments (tRFs), mitochondrial tRNAs, or lincRNAs. For their computational identification from RNA-seq data, we developed a novel computational pipeline, designated as ncRNASeqScan. By these analyses, in CKD patients we identified 30 differentially expressed ncRNAs, derived from urinary exosomes, as suitable biomarkers for early diagnosis. Thereby, miRNA-181a appeared as the most robust and stable potential biomarker, being significantly decreased by about 200-fold in exosomes of CKD patients compared to healthy controls. Using a cell culture system for CKD indicated that urinary exosomes might indeed originate from renal proximal tubular epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Exossomos/química , Túbulos Renais Proximais/metabolismo , MicroRNAs/urina , Insuficiência Renal Crônica/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Estudos de Casos e Controles , Diagnóstico Precoce , Células Epiteliais/patologia , Exossomos/metabolismo , Feminino , Taxa de Filtração Glomerular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Túbulos Renais Proximais/patologia , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , RNA/urina , RNA Longo não Codificante/urina , RNA Mitocondrial , RNA de Transferência/urina , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Análise de Sequência de RNA , Índice de Gravidade de Doença
5.
Nucleic Acids Res ; 44(2): 852-62, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26578598

RESUMO

Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m(6)A), 5-methylcytosine (m(5)C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m(5)C and m(6)A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m(5)C, m(6)A, Ψ or 2'-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m(5)C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.


Assuntos
Adenosina/análogos & derivados , Pseudouridina/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , 5-Metilcitosina/metabolismo , Adenosina/genética , Adenosina/metabolismo , Códon , Escherichia coli/genética , Metiltransferases/genética , Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA/química , RNA/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
6.
Eur Heart J ; 38(23): 1823-1831, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28444229

RESUMO

AIMS: Lp(a) concentrations represent a major cardiovascular risk factor and are almost entirely controlled by one single locus (LPA). However, many genetic factors in LPA governing the enormous variance of Lp(a) levels are still unknown. Since up to 70% of the LPA coding sequence are located in a difficult to access hypervariable copy number variation named KIV-2, we hypothesized that it may contain novel functional variants with pronounced effects on Lp(a) concentrations. We performed a large scale mutation analysis in the KIV-2 using an extreme phenotype approach. METHODS AND RESULTS: We compiled an discovery set of 123 samples showing discordance between LPA isoform phenotype and Lp(a) concentrations and controls. Using ultra-deep sequencing, we identified a splice site variant (G4925A) in preferential association with the smaller LPA isoforms. Follow-up in a European general population (n = 2892) revealed an exceptionally high carrier frequency of 22.1% in the general population. The variant explains 20.6% of the Lp(a) variance in carriers of low molecular weight (LMW) apo(a) isoforms (P = 5.75e-38) and reduces Lp(a) concentrations by 31.3 mg/dL. Accordingly the odds ratio for cardiovascular disease was reduced from 1.39 [95% confidence interval (CI): 1.17-1.66, P = 1.89e-04] for wildtype LMW individuals to 1.19 [95%CI: 0.92; 1.56, P = 0.19] in LMW individuals who were additionally positive for G4925A. Functional studies point towards a reduction of splicing efficiency by this novel variant. CONCLUSION: A highly frequent but until now undetected variant in the LPA KIV-2 region is strongly associated with reduced Lp(a) concentrations and reduced cardiovascular risk in LMW individuals.


Assuntos
Doenças Cardiovasculares/genética , Kringles/genética , Lipoproteína(a)/genética , Adulto , Idoso , Variações do Número de Cópias de DNA/genética , Feminino , Genótipo , Humanos , Desequilíbrio de Ligação/genética , Lipoproteína(a)/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Risco
7.
RNA ; 20(12): 1929-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344396

RESUMO

We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.


Assuntos
Doença de Alzheimer/genética , Epilepsia/genética , MicroRNAs/biossíntese , Doença de Parkinson/genética , RNA não Traduzido/biossíntese , Doença de Alzheimer/patologia , Animais , Canais de Cálcio/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Epilepsia/patologia , Regulação da Expressão Gênica , Genoma , Humanos , Camundongos , MicroRNAs/genética , Especificidade de Órgãos , Doença de Parkinson/patologia , RNA não Traduzido/genética , Análise Serial de Tecidos
8.
RNA Biol ; 13(9): 760-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27351916

RESUMO

The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N(6)-methyladenosine (m(6)A), 5-methylcytosine (m(5)C), pseudouridine (Ψ) and N(1)-methyladenosine (m(1)A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression.


Assuntos
Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Humanos , Biossíntese de Proteínas , Ribossomos/metabolismo
9.
Nucleic Acids Res ; 40(13): 6001-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22492625

RESUMO

Protein-coding genes, guiding differentiation of ES cells into neural cells, have extensively been studied in the past. However, for the class of ncRNAs only the involvement of some specific microRNAs (miRNAs) has been described. Thus, to characterize the entire small non-coding RNA (ncRNA) transcriptome, involved in the differentiation of mouse ES cells into neural cells, we have generated three specialized ribonucleo-protein particle (RNP)-derived cDNA libraries, i.e. from pluripotent ES cells, neural progenitors and differentiated neural cells, respectively. By high-throughput sequencing and transcriptional profiling we identified several novel miRNAs to be involved in ES cell differentiation, as well as seven small nucleolar RNAs. In addition, expression of 7SL, 7SK and vault-2 RNAs was significantly up-regulated during ES cell differentiation. About half of ncRNA sequences from the three cDNA libraries mapped to intergenic or intragenic regions, designated as interRNAs and intraRNAs, respectively. Thereby, novel ncRNA candidates exhibited a predominant size of 18-30 nt, thus resembling miRNA species, but, with few exceptions, lacking canonical miRNA features. Additionally, these novel intraRNAs and interRNAs were not only found to be differentially expressed in stem-cell derivatives, but also in primary cultures of hippocampal neurons and astrocytes, strengthening their potential function in neural ES cell differentiation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Neurais/metabolismo , RNA não Traduzido/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Neurônios/metabolismo , RNA não Traduzido/química , Ribonucleoproteínas/metabolismo
10.
Am J Hum Genet ; 87(6): 802-12, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21129724

RESUMO

The genetic etiology of prostate cancer, the most common form of male cancer in western countries, is complex and the interplay of disease genes with environmental factors is far from being understood. Studies on somatic mitochondrial DNA (mtDNA) mutations have become an important aspect of cancer research because these mutations might have functional consequences and/or might serve as biosensors for tumor detection and progression. We sequenced the entire mitochondrial genome (16,569 bp) from 30 prospectively collected pairs of macrodissected cancerous and benign cells from prostate cancer patients and compared their genetic variability. Given recent concerns regarding the authenticity of newly discovered mtDNA mutations, we implemented a high-quality procedure for mtDNA whole-genome sequencing. In addition, the mitochondrial genes MT-CO2, MT-CO3, MT-ATP6, and MT-ND6 were sequenced in further 35 paired samples from prostate cancer patients. We identified a total of 41 somatic mutations in 22 out of 30 patients: the majority of these mutations have not previously been observed in the human phylogeny. The presence of somatic mutations in transfer RNAs (tRNAs) was found to be associated with elevated PSA levels (14.25 ± 5.44 versus 7.15 ± 4.32 ng/ml; p = 0.004). The level and degree of heteroplasmy increased with increasing tumor activity. In summary, somatic mutations in the mitochondrial genome are frequent events in prostate cancer. Mutations mapping to mitochondrial tRNAs, ribosomal RNAs, and protein coding genes might impair processes that occur within the mitochondrial compartment (e.g., transcription, RNA processing, and translation) and might finally affect oxidative phosphorylation.


Assuntos
DNA Mitocondrial/genética , Mutação , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/genética , Humanos , Masculino , Conformação de Ácido Nucleico , Filogenia , Estudos Prospectivos , RNA de Transferência/química , RNA de Transferência/genética
11.
Mol Microbiol ; 80(4): 868-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21375594

RESUMO

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.


Assuntos
Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum , RNA Bacteriano/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Northern Blotting , Regulação Bacteriana da Expressão Gênica , Análise em Microsséries , Fases de Leitura Aberta/genética , Pseudomonas aeruginosa/genética , Análise de Sequência de RNA , Transdução de Sinais , Transativadores/metabolismo
12.
RNA ; 21(4): 645-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25780174
13.
RNA ; 16(7): 1293-300, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20484469

RESUMO

Small nucleolar RNAs (snoRNAs) guide nucleotide modifications within ribosomal RNAs or spliceosomal RNAs by base-pairing to complementary regions within their RNA targets. The brain-specific snoRNA MBII-52 lacks such a complementarity to rRNAs or snRNAs, but instead has been reported to target the serotonin receptor 2C pre-mRNA, thereby regulating pre-mRNA editing and/or alternative splicing. To understand how the MBII-52 snoRNA might be involved in these regulatory processes, we isolated the MBII-52 snoRNP from total mouse brain by an antisense RNA affinity purification approach. Surprisingly, by mass spectrometry we identified 17 novel candidates for MBII-52 snoRNA binding proteins, which previously had not been reported to be associated with canonical snoRNAs. Among these, Nucleolin and ELAVL1 proteins were confirmed to independently and directly interact with the MBII-52 snoRNA by coimmunoprecipitation. Our findings suggest that the MBII-52 snoRNA assembles into novel RNA-protein complexes, distinct from canonical snoRNPs.


Assuntos
Encéfalo/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Animais , Nucléolo Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/metabolismo
14.
Nucleic Acids Res ; 38(10): e113, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20150415

RESUMO

Up to 450,000 non-coding RNAs (ncRNAs) have been predicted to be transcribed from the human genome. However, it still has to be elucidated which of these transcripts represent functional ncRNAs. Since all functional ncRNAs in Eukarya form ribonucleo-protein particles (RNPs), we generated specialized cDNA libraries from size-fractionated RNPs and validated the presence of selected ncRNAs within RNPs by glycerol gradient centrifugation. As a proof of concept, we applied the RNP method to human Hela cells or total mouse brain, and subjected cDNA libraries, generated from the two model systems, to deep-sequencing. Bioinformatical analysis of cDNA sequences revealed several hundred ncRNP candidates. Thereby, ncRNAs candidates were mainly located in intergenic as well as intronic regions of the genome, with a significant overrepresentation of intron-derived ncRNA sequences. Additionally, a number of ncRNAs mapped to repetitive sequences. Thus, our RNP approach provides an efficient way to identify new functional small ncRNA candidates, involved in RNP formation.


Assuntos
Biblioteca Gênica , RNA não Traduzido/metabolismo , Ribonucleoproteínas/química , Animais , Sequência de Bases , Química Encefálica , Sequência Conservada , Éxons , Perfilação da Expressão Gênica , Células HeLa , Humanos , Íntrons , Camundongos , RNA não Traduzido/classificação , RNA não Traduzido/isolamento & purificação , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteínas/isolamento & purificação
15.
RNA ; 15(10): 1797-804, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19690100

RESUMO

In the recent past, several thousand noncoding RNA (ncRNA) genes have been predicted within eukaryal genomes. However, for their functional analysis only a few high-throughput methods are currently available to knock down selected ncRNA species, such as microRNAs, which are targeted by antisense probes, termed antagomirs. We thus compared the efficiencies of four knockdown strategies, previously mainly employed for the analysis of protein-coding genes, to study the function of ncRNAs, in particular, small nucleolar RNAs (snoRNAs). Thereby, the class of snoRNAs represents one of the most abundant ncRNA species. The majority of snoRNAs has been shown to mediate nucleotide modifications by targeting ribosomal RNAs (rRNAs) through complementary antisense elements. However, some snoRNAs, termed "orphan snoRNAs," lack telltale complementarities to rRNAs and thus their function remains elusive. We therefore applied RNA interference (RNAi), locked nucleic acid (LNA), or peptide nucleic acid antisense approaches, as well as a ribozyme-based strategy to knock down a snoRNA. As a proof of principle, we targeted the canonical U81 snoRNA, which has been shown to mediate modification of nucleotide A(391) within eukaryal 28S rRNA. Our results demonstrate that while RNAi is an unsuitable tool for snoRNA knockdown, a ribozyme-based strategy, as well as an LNA-antisense oligonucleotide approach, resulted in a decrease of U81 snoRNA expression levels up to 60%. However, no concomitant decrease in enzymatic activity of U81 snoRNA was observed, indicating that improvement of more efficient knockdown techniques for ncRNAs will be required in the future.


Assuntos
Técnicas de Silenciamento de Genes , RNA não Traduzido/genética , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Hibridização in Situ Fluorescente , Conformação de Ácido Nucleico , Interferência de RNA , RNA não Traduzido/química
16.
PLoS Pathog ; 5(8): e1000547, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19680535

RESUMO

Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a sub-nuclear compartment, in which they guide ribosomal or spliceosomal RNA modifications, respectively. Up until now, snoRNAs have only been identified in eukaryal and archaeal genomes, but are notably absent in bacteria. By screening B lymphocytes for expression of non-coding RNAs (ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for the first time, the identification of a snoRNA gene within a viral genome, designated as v-snoRNA1. This genetic element displays all hallmark sequence motifs of a canonical C/D box snoRNA, namely C/C'- as well as D/D'-boxes. The nucleolar localization of v-snoRNA1 was verified by in situ hybridisation of EBV-infected cells. We also confirmed binding of the three canonical snoRNA proteins, fibrillarin, Nop56 and Nop58, to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be crucial for the stability of the viral snoRNA; its selective deletion in the viral genome led to a complete down-regulation of v-snoRNA1 expression levels within EBV-infected B cells. We further provide evidence that v-snoRNA1 might serve as a miRNA-like precursor, which is processed into 24 nt sized RNA species, designated as v-snoRNA1(24pp). A potential target site of v-snoRNA1(24pp) was identified within the 3'-UTR of BALF5 mRNA which encodes the viral DNA polymerase. V-snoRNA1 was found to be expressed in all investigated EBV-positive cell lines, including lymphoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By a computational approach, we identified a v-snoRNA1 homolog in the rhesus lymphocryptovirus genome. This evolutionary conservation suggests an important role of v-snoRNA1 during gamma-herpesvirus infection.


Assuntos
Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , RNA Nucleolar Pequeno/genética , Animais , Linfócitos B/virologia , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Hibridização in Situ Fluorescente , Macaca mulatta , Dados de Sequência Molecular , RNA Viral/genética
17.
J Cell Biol ; 169(5): 745-53, 2005 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-15939761

RESUMO

Posttranscriptional, site-specific adenosine to inosine (A-to-I) base conversions, designated as RNA editing, play significant roles in generating diversity of gene expression. However, little is known about how and in which cellular compartments RNA editing is controlled. Interestingly, the two enzymes that catalyze RNA editing, adenosine deaminases that act on RNA (ADAR) 1 and 2, have recently been demonstrated to dynamically associate with the nucleolus. Moreover, we have identified a brain-specific small RNA, termed MBII-52, which was predicted to function as a nucleolar C/D RNA, thereby targeting an A-to-I editing site (C-site) within the 5-HT2C serotonin receptor pre-mRNA for 2'-O-methylation. Through the subcellular targeting of minigenes that contain natural editing sites, we show that ADAR2- but not ADAR1-mediated RNA editing occurs in the nucleolus. We also demonstrate that MBII-52 forms a bona fide small nucleolar ribonucleoprotein particle that specifically decreases the efficiency of RNA editing by ADAR2 at the targeted C-site. Our data are consistent with a model in which C/D small nucleolar RNA might play a role in the regulation of RNA editing.


Assuntos
Adenosina Desaminase/metabolismo , Nucléolo Celular/metabolismo , Edição de RNA/genética , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Adenosina Desaminase/genética , Animais , Compartimento Celular/genética , Nucléolo Celular/genética , Camundongos , Células NIH 3T3 , Precursores de RNA/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas de Ligação a RNA , Ratos , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
18.
RNA Biol ; 7(5): 586-95, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21037422

RESUMO

Epstein-Barr virus (EBV) infection of human B cells requires the presence of non-coding RNAs (ncRNAs), which regulate expression of viral and host genes. To identify differentially expressed regulatory ncRNAs involved in EBV infection, a specialized cDNA library, enriched for ncRNAs derived from EBV-infected cells, was subjected to deep-sequencing. From the deep-sequencing analysis, we generated a custom-designed ncRNA-microchip to investigate differential expression of ncRNA candidates. By this approach, we identified 25 differentially expressed novel host-encoded ncRNA candidates in EBV-infected cells, comprised of six non-repeat-derived and 19 repeat-derived ncRNAs. Upon EBV infection of B cells, we also observed increased expression levels of oncogenic miRNAs mir-221 and mir-222, which might contribute to EBV-related tumorigenesis, as well as decreased expression levels of RNase P RNA, a ribozyme involved in tRNA maturation. Thus, in this study we demonstrate that our ncRNA-microchip approach serves as a powerful tool to identify novel differentially expressed ncRNAs acting as potential regulators of gene expression during EBV infection.


Assuntos
Procedimentos Analíticos em Microchip/métodos , RNA não Traduzido/análise , Linfócitos B , Infecções por Vírus Epstein-Barr , Perfilação da Expressão Gênica , Herpesvirus Humano 4 , Humanos
19.
Nucleic Acids Res ; 36(8): 2677-89, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18346967

RESUMO

Small non-protein-coding RNAs (ncRNAs) have systematically been studied in various model organisms from Escherichia coli to Homo sapiens. Here, we analyse the small ncRNA transcriptome from the pathogenic filamentous fungus Aspergillus fumigatus. To that aim, we experimentally screened for ncRNAs, expressed under various growth conditions or during specific developmental stages, by generating a specialized cDNA library from size-selected small RNA species. Our screen revealed 30 novel ncRNA candidates from known ncRNA classes such as small nuclear RNAs (snRNAs) and C/D box-type small nucleolar RNAs (C/D box snoRNAs). Additionally, several candidates for H/ACA box snoRNAs could be predicted by a bioinformatical screen. We also identified 15 candidates for ncRNAs, which could not be assigned to any known ncRNA class. Some of these ncRNA species are developmentally regulated implying a possible novel function in A. fumigatus development. Surprisingly, in addition to full-length tRNAs, we also identified 5'- or 3'-halves of tRNAs, only, which are likely generated by tRNA cleavage within the anti-codon loop. We show that conidiation induces tRNA cleavage resulting in tRNA depletion within conidia. Since conidia represent the resting state of A. fumigatus we propose that conidial tRNA depletion might be a novel mechanism to down-regulate protein synthesis in a filamentous fungus.


Assuntos
Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , RNA não Traduzido/metabolismo , Aspergillus fumigatus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Biblioteca Gênica , RNA Nuclear Pequeno/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/metabolismo , RNA não Traduzido/classificação
20.
Trends Plant Sci ; 13(7): 329-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448381

RESUMO

Non-coding RNAs are increasingly being identified as crucial regulators of gene expression and other cellular functions in plants. Experimental and computational methods have revealed the existence of mRNA-like non-coding RNAs (mlncRNAs), a class of non-coding RNAs that, in plants, are associated with tissue-specific expression, development and the phosphate-starvation response. Although their mechanisms of action are largely unknown, one can speculate that mlncRNAs act through secondary structures or specific sequences that bind to proteins or metabolites, or that have catalytic activity. This review summarizes the computational methods developed to identify candidate mlncRNAs, and the current experimental evidence regarding the function of several known mlncRNAs.


Assuntos
RNA Mensageiro/genética , RNA não Traduzido/genética , Regulação da Expressão Gênica de Plantas , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA