Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353305

RESUMO

Simulations of condensed matter systems at the hybrid density functional theory level pose significant computational challenges. The elevated costs arise from the non-local nature of the Hartree-Fock exchange (HFX) in conjunction with the necessity to approach the thermodynamic limit. In this work, we address these issues with the development of a new efficient method for the calculation of HFX in periodic systems, employing k-point sampling. We rely on a local atom-specific resolution-of-the-identity scheme, the use of atom-centered Gaussian type orbitals, and the truncation of the Coulomb interaction to limit computational complexity. Our real-space approach exhibits a scaling that is, at worst, linear with the number of k-points. Issues related to basis set diffuseness are effectively addressed through the auxiliary density matrix method. We report the implementation in the CP2K software package, as well as accuracy and performance benchmarks. This method demonstrates excellent agreement with equivalent Γ-point supercell calculations in terms of relative energies and nuclear gradients. Good strong and weak scaling performances, as well as graphics processing unit (GPU) acceleration, make this implementation a promising candidate for high-performance computing.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214385

RESUMO

The Random-Phase approximation (RPA) provides an appealing framework for semi-local density functional theory. In its Resolution-of-the-Identity (RI) approach, it is a very accurate and more cost-effective method than most other wavefunction-based correlation methods. For widespread applications, efficient implementations of nuclear gradients for structure optimizations and data sampling of machine learning approaches are required. We report a well scaling implementation of RI-RPA nuclear gradients on massively parallel computers. The approach is applied to two polymorphs of the benzene crystal obtaining very good cohesive and relative energies. Different correction and extrapolation schemes are investigated for further improvement of the results and estimations of error bars.

3.
Phys Chem Chem Phys ; 25(31): 20817-20836, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497572

RESUMO

We study self-interaction effects in solvated and strongly-correlated cationic molecular clusters, with a focus on the solvated hydroxyl radical. To address the self-interaction issue, we apply the DC-r2SCAN method, with the auxiliary density matrix approach. Validating our method through simulations of bulk liquid water, we demonstrate that DC-r2SCAN maintains the structural accuracy of r2SCAN while effectively addressing spin density localization issues. Extending our analysis to solvated cationic molecular clusters, we find that the hemibonded motif in the [CH3S∴CH3SH]+ cluster is disrupted in the DC-r2SCAN simulation, in contrast to r2SCAN that preserves the (three-electron-two-center)-bonded motif. Similarly, for the [SH∴SH2]+ cluster, r2SCAN restores the hemibonded motif through spin leakage, while DC-r2SCAN predicts a weaker hemibond formation influenced by solvent-solute interactions. Our findings demonstrate the potential of DC-r2SCAN combined with the auxiliary density matrix method to improve electronic structure calculations, providing insights into the properties of solvated cationic molecular clusters. This work contributes to the advancement of self-interaction corrected electronic structure theory and offers a computational framework for modeling condensed phase systems with intricate correlation effects.

4.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37102449

RESUMO

The development of novel double-hybrid density functionals offers new levels of accuracy and is leading to fresh insights into the fundamental properties of matter. Hartree-Fock exact exchange and correlated wave function methods, such as second-order Møller-Plesset (MP2) and direct random phase approximation (dRPA), are usually required to build such functionals. Their high computational cost is a concern, and their application to large and periodic systems is, therefore, limited. In this work, low-scaling methods for Hartree-Fock exchange (HFX), SOS-MP2, and direct RPA energy gradients are developed and implemented in the CP2K software package. The use of the resolution-of-the-identity approximation with a short range metric and atom-centered basis functions leads to sparsity, allowing for sparse tensor contractions to take place. These operations are efficiently performed with the newly developed Distributed Block-sparse Tensors (DBT) and Distributed Block-sparse Matrices (DBM) libraries, which scale to hundreds of graphics processing unit (GPU) nodes. The resulting methods, resolution-of-the-identity (RI)-HFX, SOS-MP2, and dRPA, were benchmarked on large supercomputers. They exhibit favorable sub-cubic scaling with system size, good strong scaling performance, and GPU acceleration up to a factor of 3. These developments will allow for double-hybrid level calculations of large and periodic condensed phase systems to take place on a more regular basis.

5.
J Chem Phys ; 158(5): 054111, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754794

RESUMO

Accurate descriptions of intermolecular interactions are of great importance in simulations of molecular liquids. We present an electronic structure method that combines the accuracy of the Harris functional approach with the computational efficiency of approximately linear-scaling density functional theory (DFT). The non-variational nature of the Harris functional has been addressed by constructing a Lagrangian energy functional, which restores the variational condition by imposing stationarity with respect to the reference density. The associated linear response equations may be treated with linear-scaling efficiency in an atomic orbital based scheme. Key ingredients to describe the structural and dynamical properties of molecular systems are the forces acting on the atoms and the stress tensor. These first-order derivatives of the Harris Lagrangian have been derived and implemented in consistence with the energy correction. The proposed method allows for simulations with accuracies close to the Kohn-Sham DFT reference. Embedded in the CP2K program package, the method is designed to enable ab initio molecular dynamics simulations of molecular solutions for system sizes of several thousand atoms. Available subsystem DFT methods may be used to provide the reference density required for the energy correction at near linear-scaling efficiency. As an example of production applications, we applied the method to molecular dynamics simulations of the binary mixtures cyclohexane-methanol and toluene-methanol, performed within the isobaric-isothermal ensemble, to investigate the hydrogen bonding network in these non-ideal mixtures.

6.
Chimia (Aarau) ; 77(1-2): 48-55, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38047853

RESUMO

Micropollutants have become a serious environmental problem by threatening ecosystems and the quality of drinking water. This account investigates if advanced AI can be used to find solutions for this problem. We review background, the challenges involved, and the current state-of-the-art of quantitative structure-biodegradation relationships (QSBR). We report on recent progress combining experiment, quantum chemistry (QC) and chemoinformatics, and provide a perspective on potential future uses of AI technology to help improve water quality.

7.
J Chem Phys ; 156(7): 074107, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183084

RESUMO

Due to their improved accuracy, double-hybrid density functionals emerged as an important method for molecular electronic-structure calculations. The high computational costs of double-hybrid calculations in the condensed phase and the lack of efficient gradient implementations thereof inhibit a wide applicability for periodic systems. We present an implementation of forces and stress tensors for double-hybrid density functionals within the Gaussian and plane-waves electronic structure framework. The auxiliary density matrix method is used to reduce the overhead of the Hartree-Fock kernel providing an efficient and accurate methodology to tackle condensed phase systems. First applications to water systems of different densities and molecular crystals show the efficiency of the implementation and pave the way for advanced studies. Finally, we present large benchmark systems to discuss the performance of our implementation on modern large-scale computers.

8.
Phys Chem Chem Phys ; 23(8): 4736-4746, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33598668

RESUMO

We discuss our implementation of linear-response time-dependent density functional theory (LR-TDDFT) for core level near-edge absorption spectroscopy. The method is based on established LR-TDDFT approaches to X-ray absorption spectroscopy (XAS) with additional accurate approximations for increased efficiency. We validate our implementation by reproducing benchmark results at the K-edge and showing that spin-orbit coupling effects at the L2,3-edge are well described. We also demonstrate that the method is suitable for extended systems in periodic boundary conditions and measure a favorable sub-cubic scaling of the calculation cost with system size. We finally show that GPUs can be efficiently exploited and report speedups of up to a factor 2.

9.
J Chem Phys ; 155(3): 034108, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293885

RESUMO

Linear-response time-dependent density functional theory (LR-TDDFT) for core level spectroscopy using standard local functionals suffers from self-interaction error and a lack of orbital relaxation upon creation of the core hole. As a result, LR-TDDFT calculated x-ray absorption near edge structure spectra needed to be shifted along the energy axis to match experimental data. We propose a correction scheme based on many-body perturbation theory to calculate the shift from first-principles. The ionization potential of the core donor state is first computed and then substituted for the corresponding Kohn-Sham orbital energy, thus emulating Koopmans's condition. Both self-interaction error and orbital relaxation are taken into account. The method exploits the localized nature of core states for efficiency and integrates seamlessly in our previous implementation of core level LR-TDDFT, yielding corrected spectra in a single calculation. We benchmark the correction scheme on molecules at the K- and L-edges as well as for core binding energies and report accuracies comparable to higher order methods. We also demonstrate applicability in large and extended systems and discuss efficient approximations.

10.
Phys Chem Chem Phys ; 22(19): 10641-10652, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894785

RESUMO

The ability to reproduce the experimental structure of water around the sodium and potassium ions is a key test of the quality of interaction potentials due to the central importance of these ions in a wide range of important phenomena. Here, we simulate the Na+ and K+ ions in bulk water using three density functional theory functionals: (1) the generalized gradient approximation (GGA) based dispersion corrected revised Perdew, Burke, and Ernzerhof functional (revPBE-D3) (2) the recently developed strongly constrained and appropriately normed (SCAN) functional (3) the random phase approximation (RPA) functional for potassium. We compare with experimental X-ray diffraction (XRD) and X-ray absorption fine structure (EXAFS) measurements to demonstrate that SCAN accurately reproduces key structural details of the hydration structure around the sodium and potassium cations, whereas revPBE-D3 fails to do so. However, we show that SCAN provides a worse description of pure water in comparison with revPBE-D3. RPA also shows an improvement for K+, but slow convergence prevents rigorous comparison. Finally, we analyse cluster energetics to show SCAN and RPA have smaller fluctuations of the mean error of ion-water cluster binding energies compared with revPBE-D3.

11.
J Chem Phys ; 152(19): 194103, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687235

RESUMO

CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.

12.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172070

RESUMO

Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets.


Assuntos
Modelos Moleculares , Amônia/química , Cristalização , Teoria da Densidade Funcional , Cianeto de Hidrogênio/química , Modelos Químicos , Distribuição Normal
13.
Chemistry ; 23(37): 8823-8828, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28493380

RESUMO

A novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation, utilizing gaseous diborane, is reported. The covalently confined amine borane derivative decorated on the framework backbone is stable when preserved at low temperature, but spontaneously liberates soft chemical hydrogen at room temperature, leading to the development of an unusual borenium type species (-NH=BH2+ ) ion-paired with a hydroborate anion. Furthermore, the unsaturated amino borane (-NH=BH2 ) and the µ-iminodiborane (-µ-NHB2 H5 ) were detected as final products. A combination of DFT based molecular dynamics simulations and solid state NMR spectroscopy, utilizing isotopically enriched materials, were undertaken to unequivocally elucidate the mechanistic pathways for H2 liberation.

14.
J Chem Phys ; 146(3): 034105, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109230

RESUMO

An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

15.
J Chem Phys ; 146(24): 244501, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668048

RESUMO

First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

16.
J Comput Chem ; 36(11): 785-94, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25766580

RESUMO

The electrophilic N-trifluoromethylation of MeCN with a hypervalent iodine reagent to form a nitrilium ion, that is rapidly trapped by an azole nucleophile, is thought to occur via reductive elimination (RE). A recent study showed that, depending on the solvent representation, the S(N)2 is favoured to a different extent over the RE. However, there is a discriminative solvent effect present, which calls for a statistical mechanics approach to fully account for the entropic contributions. In this study, we perform metadynamic simulations for two trifluoromethylation reactions (with N- and S-nucleophiles), showing that the RE mechanism is always favoured in MeCN solution. These computations also indicate that a radical mechanism (single electron transfer) may play an important role. The computational protocol based on accelerated molecular dynamics for the exploration of the free energy surface is transferable and will be applied to similar reactions to investigate other electrophiles on the reagent. Based on the activation parameters determined, this approach also gives insight into the mechanistic details of the trifluoromethylation and shows that these commonly known mechanisms mark the limits within which the reaction proceeds.


Assuntos
Compostos de Iodo/química , Simulação por Computador , Metilação , Estrutura Molecular , Fenóis/química , Termodinâmica
17.
Phys Chem Chem Phys ; 17(22): 14307-16, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25430062

RESUMO

The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced by assigning specifically generated partial charges to each MM atom. We propose a method to determine restrained electrostatic potential (RESP) charges that can be applied to periodic systems. Our approach is based on the Gaussian and plane waves algorithm and allows an easy tuning of charges for nano-structured substrates. We have successfully applied it to reproduce the electrostatic potential of the corrugated and flat h-BN/Rh(111) known as nanomesh. Molecular dynamics simulations of water films in contact with these substrates are performed and structural and dynamic properties of the interfaces are analyzed. Based on this analysis and on the interaction energies between water film and substrate, we found that the corrugated nanomesh is slightly more hydrophilic. On a macroscopic scale, we expect a smaller contact angle for a droplet on the corrugated surface.

18.
Phys Chem Chem Phys ; 17(35): 22846-54, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26264077

RESUMO

Solar-light driven water splitting is a promising way for the sustainable production of molecular hydrogen, the latter representing an efficient carrier for energy storage and conversion into common liquid fuels. In search of novel catalysts for high-performance water splitting devices, Co-pyrphyrin (CoPy) has been recently synthesized and successfully used as a homogeneous water reduction catalyst. We investigate the adsorption of this molecule on the rutile TiO2(110) surface as a possible first step towards the design of a heterogeneous water reduction system. We find that the adsorption of the molecule is stabilized by the interaction of the cyano groups with the under-coordinated Ti centers present at the surface. This interaction induces the rehybridization of the molecular orbitals localized on the cyano groups and the realignment of the lowest unoccupied molecular states. Moreover, the highest occupied molecular orbital of CoPy@rutile(110) is localized on CoPy and the energy gap turns out to be significantly smaller than the gap of pristine rutile(110). This implies that direct or indirect injection of electrons from CoPy to the rutile(110) surface is in principle possible upon the absorption of light in the visible range. On the other hand, the electronic properties of the Co(ii) center are not modified by the adsorption, which suggests that CoPy and its derivatives may be used in water electrolysis for hydrogen production also in the adsorbed state.


Assuntos
Cobalto/química , Metaloporfirinas/química , Titânio/química , Adsorção , Teoria Quântica , Propriedades de Superfície
19.
J Chem Phys ; 143(5): 054506, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26254660

RESUMO

Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

20.
J Chem Phys ; 143(10): 102803, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26373996

RESUMO

The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA