Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 113(7): 2420-33, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25632074

RESUMO

The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset.


Assuntos
Células Ciliadas Vestibulares/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Vestíbulo do Labirinto/ultraestrutura , Animais , Axônios/ultraestrutura , Tartarugas , Vestíbulo do Labirinto/inervação
2.
J Neurophysiol ; 74(3): 1362-6, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7500159

RESUMO

1. We visualized the central axons of 32 vestibular afferents from the posterior canal by extracellular application of horseradish peroxidase, reconstructed them in three dimensions, and quantified their morphology. Here we compare the descending limbs of central axons that differ in parent axon diameter. 2. The brain stem distribution of descending limb terminals (collaterals and associated varicosities) varies systematically with parent axon diameter. Large-diameter afferents concentrate their terminals in rostral regions of the medial/descending nuclei. As axon diameter decreases, there is a significant shift of terminal concentration toward the caudal vestibular complex and adjacent brain stem. 3. Rostral and caudal regions of the medial/descending nuclei have different labyrinthine, cerebellar, intrinsic, commissural, and spinal connections; they are believed to play different roles in head movement control. Our data help clarify the functions of large- and small-diameter afferents by showing that they contribute differentially to rostral and caudal vestibular complex.


Assuntos
Vias Aferentes/fisiologia , Axônios/fisiologia , Tronco Encefálico/fisiologia , Nervo Vestibular/fisiologia , Animais , Processamento de Imagem Assistida por Computador/métodos , Tartarugas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA