Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 626(7998): 435-442, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109936

RESUMO

Many peptide hormones form an α-helix on binding their receptors1-4, and sensitive methods for their detection could contribute to better clinical management of disease5. De novo protein design can now generate binders with high affinity and specificity to structured proteins6,7. However, the design of interactions between proteins and short peptides with helical propensity is an unmet challenge. Here we describe parametric generation and deep learning-based methods for designing proteins to address this challenge. We show that by extending RFdiffusion8 to enable binder design to flexible targets, and to refining input structure models by successive noising and denoising (partial diffusion), picomolar-affinity binders can be generated to helical peptide targets by either refining designs generated with other methods, or completely de novo starting from random noise distributions without any subsequent experimental optimization. The RFdiffusion designs enable the enrichment and subsequent detection of parathyroid hormone and glucagon by mass spectrometry, and the construction of bioluminescence-based protein biosensors. The ability to design binders to conformationally variable targets, and to optimize by partial diffusion both natural and designed proteins, should be broadly useful.


Assuntos
Desenho Assistido por Computador , Aprendizado Profundo , Peptídeos , Proteínas , Técnicas Biossensoriais , Difusão , Glucagon/química , Glucagon/metabolismo , Medições Luminescentes , Espectrometria de Massas , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo , Especificidade por Substrato , Modelos Moleculares
2.
Clin Chem ; 69(7): 734-745, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279935

RESUMO

BACKGROUND: APOE genotype is associated with Alzheimer disease. Thus, the concentration of apolipoprotein E (apoE) isoforms in cerebrospinal fluid (CSF) could be altered in dementia. However, conflicting results have been obtained in different studies. Carefully validated and standardized assays could improve the interpretation of research findings, allow their replication in other laboratories, and generalize their application. METHODS: To evaluate this hypothesis, we aimed to develop, validate, and standardize a new measurement procedure using LC-MS/MS. Purified recombinant apoE protein standards (E2, E3, E4) were thoroughly characterized and used to assign the concentration of a matrix-matched calibration material that contained each apoE isoform, which ensured the metrological traceability of results. RESULTS: The assay of each isoform in human CSF was precise (≤11%CV) and of moderate throughput (approximately 80 samples per day). It demonstrated good linearity and parallelism for lumbar CSF, ventricular CSF, and bovine CSF. The use of an SI-traceable matrix-matched calibrator enabled precise and accurate measurements. There was no association observed between total apoE concentration and the number of Ɛ4 alleles in a cohort of 322 participants. However, the concentration of each isoform was significantly different in heterozygotes, with E4 > E3 > E2. Isoform concentrations were associated with cognitive and motor symptoms but contributed negligibly to a predictive model of cognitive impairment that included established CSF biomarkers. CONCLUSIONS: Our method simultaneously measures each apoE isoform in human CSF with excellent precision and accuracy. A secondary matrix-matched material has been developed and is available to other laboratories to improve interlaboratory agreement.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Animais , Bovinos , Cromatografia Líquida , Apolipoproteína E4/genética , Apolipoproteína E4/líquido cefalorraquidiano , Espectrometria de Massas em Tandem , Apolipoproteínas E/genética , Doença de Alzheimer/líquido cefalorraquidiano , Isoformas de Proteínas , Peptídeos beta-Amiloides/líquido cefalorraquidiano
3.
Anal Chem ; 94(10): 4146-4154, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235744

RESUMO

Procalcitonin (PCT) is a widely used biomarker for rapid sepsis diagnosis and antibiotic stewardship. Variability of results in commercial assays has highlighted the need for standardization of PCT measurements. An antibody-free candidate reference measurement procedure (RMP) based on the isotope dilution mass spectrometry and protein calibration approach was developed and validated to quantify PCT in human serum. The method allows quantification of PCT from 0.25 to 13.74 µg/L (R > 0.998) with extension up to 132 µg/L after dilution of samples with PCT concentration above 13.74 µg/L. Intraday bias was between -3.3 and +5.7%, and interday bias was between -3.0 and -0.7%. Intraday precision was below 5.1%, and interday precision was below 4.0%. The candidate RMP was successfully applied to the absolute quantification of PCT in five frozen human serum pools. A recombinant PCT used as a primary calibrator was characterized by high-resolution mass spectrometry and amino acid analysis to establish traceability of the results to the SI units. This candidate RMP is fit to assign target values to secondary certified reference materials (CRMs) for further use in external quality assessment schemes to monitor the accuracy and comparability of the commercially available immunoassay results and to confirm the need for improving the harmonization of PCT assays. The candidate RMP will also be used to evaluate whether the correlation between the candidate RMP and immunoassays is sufficiently high. Overall, this candidate RMP will support reliable sepsis diagnosis and guide treatment decisions, patient monitoring, and outcomes.


Assuntos
Pró-Calcitonina , Sepse , Calibragem , Humanos , Espectrometria de Massas , Proteínas Recombinantes , Padrões de Referência , Sepse/diagnóstico
4.
Clin Chem ; 68(10): 1281-1291, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35906802

RESUMO

BACKGROUND: The development of analytical approaches to help reduce the risk of growth hormone (GH) doping is important to fair competition and the health of athletes. However, the reliable detection of GH use remains challenging. The identification of novel biomarkers of GH administration could lead to a better understanding of the physiological response to GH, more sensitive detection of the illicit use of GH in sport, and better management of patients treated for GH disorders. METHODS: We developed a targeted liquid chromatography-tandem mass spectrometry method to simultaneously quantify the carboxyl-terminal propeptide of type III procollagen (P-III-CP) and type III collagen degradation products in human serum. Following proteolysis, we instituted a simple acid precipitation step to reduce digested sample complexity before peptide immunoenrichment, which improved the recovery of one target peptide from serum. We evaluated the concentration of each biomarker at different age ranges and after GH administration in healthy participants. RESULTS: The assay was linear over an estimated concentration range of 0.3 to1.0 nM and 0.1 to 0.4 nM for each surrogate peptide of P-III-CP and collagen fragments, respectively. Intra-day and inter-day coefficients of variation were ≤15%. Biomarker concentrations appeared to vary with age and to reflect age-specific collagen turnover. Moreover, their concentrations changed after GH administration. CONCLUSIONS: Our method quantifies the proteins belonging to the family of P-III-CP and type III collagen degradation products in human serum, which could be used to detect GH administration in athletes and better understand diseases involving GH therapy or altered type III collagen turnover.


Assuntos
Hormônio do Crescimento Humano , Pró-Colágeno , Biomarcadores , Cromatografia Líquida , Colágeno , Colágeno Tipo III , Hormônio do Crescimento , Humanos , Fator de Crescimento Insulin-Like I/análise , Fragmentos de Peptídeos , Peptídeos , Espectrometria de Massas em Tandem
5.
Clin Chem Lab Med ; 59(10): 1610-1622, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34147043

RESUMO

Sepsis represents a global health priority because of its high mortality and morbidity. The key to improving prognosis remains an early diagnosis to initiate appropriate antibiotic treatment. Procalcitonin (PCT) is a recognized biomarker for the early indication of bacterial infections and a valuable tool to guide and individualize antibiotic treatment. To meet the increasing demand for PCT testing, numerous PCT immunoassays have been developed and commercialized, but results have been questioned. Many comparison studies have been carried out to evaluate analytical performance and comparability of results provided by the different commercially available immunoassays for PCT, but results are conflicting. External Quality Assessment Schemes (EQAS) for PCT constitute another way to evaluate results comparability. However, when making this comparison, it must be taken into account that the variety of EQA materials consist of different matrices, the commutability of which has not yet been investigated. The present study gathers results from all published comparison studies and results from 137 EQAS surveys to describe the current state-of-the-art harmonization of PCT results. Comparison studies globally highlight a significant variability of measurement results that nonetheless seem to have a moderate impact on medical decision-making. For their part, EQAS for PCT provides highly discrepant estimates of the interlaboratory CV. Due to differences in commutability of the EQA materials, the results from different peer groups could not be compared. To improve the informative value of the EQA data, the existing limitations such as non-harmonized conditions and suboptimal and/or unknown commutability of the EQA materials have to be overcome. The study highlights the need for commutable reference materials that could be used to properly evaluate result comparability and possibly standardize calibration, if necessary. Such an initiative would further improve the safe use of PCT in clinical routine.


Assuntos
Pró-Calcitonina , Sepse , Calibragem , Humanos , Imunoensaio , Controle de Qualidade , Sepse/diagnóstico
6.
Anal Bioanal Chem ; 413(19): 4707-4725, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33987701

RESUMO

The quantification of low abundant proteins in complex matrices by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains challenging. A measurement procedure based on optimized antibody-free sample preparation and isotope dilution coupled to LC-MS/MS was developed to quantify procalcitonin (PCT) in human serum at sub-microgram per liter level. A combination of sodium deoxycholate-assisted protein precipitation with acetonitrile, solid-phase extraction, and trypsin digestion assisted with Tween-20 enhanced the method sensitivity. Linearity was established through peptide-based calibration curves in the serum matrix (0.092-5.222 µg/L of PCT) with a good linear fit (R2 ≥ 0.999). Quality control materials spiked with known amounts of protein-based standards were used to evaluate the method's accuracy. The bias ranged from -2.6 to +4.3%, and the intra-day and inter-day coefficients of variations (CVs) were below 2.2% for peptide-based quality controls. A well-characterized correction factor was determined and applied to compensate for digestion incompleteness and material loss before the internal standards spike. Results with metrological traceability to the SI units were established using standard peptide of well-characterized purity determined by peptide impurity corrected amino acid analysis. The validated method enables accurate quantification of PCT in human serum at a limit of quantification down to 0.245 µg/L (bias -1.9%, precision 9.1%). The method was successfully applied to serum samples obtained from patients with sepsis. Interestingly, the PCT concentration reported implementing the isotope dilution LC-MS/MS method was twofold lower than the concentration provided by an immunoassay.


Assuntos
Calcitonina/química , Espectrometria de Massas/métodos , Pró-Calcitonina/química , Soro/química , Sequência de Aminoácidos , Calibragem , Cromatografia Líquida/métodos , Humanos , Sensibilidade e Especificidade
7.
Ther Drug Monit ; 40(3): 337-343, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29474275

RESUMO

BACKGROUND: A simple, rapid, and sensitive liquid chromatography coupled with tandem mass spectrometry method has been developed and validated for the quantification of ruxolitinib, olaparib, vismodegib, and pazopanib in human plasma. METHODS: After a simple protein precipitation of plasma samples, the chromatographic separation was performed using an ultraperformance liquid chromatography system coupled with mass tandem spectrometry in a positive ionization mode. The mobile phase consisted of a gradient elution of 10-mmol/L formate ammonium buffer containing 0.1% (vol/vol) formic acid (phase A) and acetonitrile with 0.1% (vol/vol) formic acid (phase B) at a flow rate at 300 µL/min. RESULTS: Analysis time was 5.0 minutes per run, and all analytes and internal standards eluted within 1.5-1.73 minutes. The calibration curves were linear over the range from 10 to 2500 ng/mL for ruxolitinib and from 100 to 100,000 ng/mL for olaparib, vismodegib, and pazopanib with coefficients of correlation above 0.99 for all analytes. The intraday and interday coefficients of variation were below 14.26% and 14.81%, respectively, for lower concentration and below 9.94% and 6.37%, respectively, for higher concentration. CONCLUSIONS: Using liquid chromatography coupled with tandem mass spectrometry, we have developed and validated a simple and rapid assay for the simultaneous quantification of olaparib, vismodegib, pazopanib, and ruxolitinib in human plasma. This method is now part of our therapeutic drug monitoring service provision and is currently used clinically to manage patients prescribed these drugs.


Assuntos
Anilidas/sangue , Ftalazinas/sangue , Piperazinas/sangue , Pirazóis/sangue , Piridinas/sangue , Pirimidinas/sangue , Sulfonamidas/sangue , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Inibidores da Angiogênese/sangue , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Humanos , Indazóis , Nitrilas , Inibidores de Poli(ADP-Ribose) Polimerases/sangue , Reprodutibilidade dos Testes
9.
Clin Chim Acta ; 515: 111-121, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33450213

RESUMO

Procalcitonin (PCT) is an important biomarker for sepsis diagnosis and management. To date, there is no higher-order reference measurement procedure (RMP) and certified reference material to achieve global standardization of results and results traceability to the SI units. Although efforts have been made to harmonize PCT results, a number of comparison studies and external quality assessment (EQA) schemes show conflicting results regarding results comparability and to date, equivalence of PCT results across the assays remains questionable in absence of studies relying on commutable EQA materials. In this context, the IFCC initiated activities to fill these gaps through the creation of the working group on standardization of PCT assays that gathers experts from National Metrology Institutes, calibration laboratories, clinicians, biologists, EQA providers and assay manufacturers. Among the activities, a higher order RMP and commutable reference materials are under development to build a robust reference measurement system (RMS). A commutability study is being organized to identify EQA materials that are fit for purpose to reliably estimate the current comparability of PCT results. This work will make it possible to evaluate the necessity and the feasibility for establishing and maintaining a new RMS for PCT assays, if deemed necessary.


Assuntos
Laboratórios , Pró-Calcitonina , Calibragem , Estudos de Viabilidade , Humanos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA