Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(4): 1518-1524, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35119873

RESUMO

Crystalline films offer various physical properties based on the modulation of their thicknesses and atomic structures. The layer-by-layer assembly of atomically thin crystals provides a powerful means to arbitrarily design films at the atomic level, which are unattainable with existing growth technologies. However, atomically clean assembly of the materials with high scalability and reproducibility remains challenging. We report programmed crystal assembly of graphene and monolayer hexagonal boron nitride, assisted by van der Waals interactions, to form wafer-scale films of pristine interfaces with near-unity yield. The atomic configurations of the films are tailored with layer-resolved compositions and in-plane crystalline orientations. We demonstrate batch-fabricated tunnel device arrays with modulation of the resistance over orders of magnitude by thickness control of the hexagonal boron nitride barrier with single-atom precision and large-scale, twisted multilayer graphene with programmable electronic band structures and crystal symmetries. Our results constitute an important development in the artificial design of large-scale films.

2.
Inorg Chem ; 60(9): 6403-6409, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33856809

RESUMO

The synthesis of sandwich-shaped multinuclear silver complexes with planar penta- and tetranuclear wheel-shaped silver units and a central anion, [Agn(2-HPB)2(A-)](OTf-)n-1, nAgA, n = 4 or 5 and A- = OH- or F- or Cl-, is reported, along with complete spectroscopic and structural characterization. An NMR mechanistic study reveals that silver complexes were formed in the following order: 2Ag → 3AgH2O → 5AgOH → 4AgOH. The central hydroxides in 4AgOH and 5AgOH exhibit exotic physical properties due to the confined environment inside the complex. The size of these silver wheels can be tuned by changing the central anion or extracting/adding one silver atom. This study provides the facile way to synthesize discrete wheel-shaped multinuclear silver complexes and provides valuable insights into the dynamics of the self-assembly process.

3.
Nano Lett ; 19(8): 5604-5611, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31306574

RESUMO

Because the power conversion efficiency (PCE) of hybrid halide perovskite solar cells (PSCs) could exceed 24%, extensive research has been focused on improving their long-term stability for commercialization in the near future. In a previous study, we reported that the addition of a number of ionized iodide (triiodide: I3-) ions during perovskite film formation significantly improved the efficiency of PSCs by reducing deep-level defects in the perovskite layer. Understanding the relationship between the concentration of these defects and the long-term chemical aging of PSCs is important not only for obtaining fundamental insight into the perovskite materials but also for studying the long-term chemical stability of PSCs. Herein we aim to identify the origin of the natural decay in PCE during long-term chemical aging of PSCs in the dark based on formamidinium lead triiodide by comparing the performance of control and low-defect (LD) devices. After aging for 200 days, the change in the PCE of the LD devices (1.3%) was found to be half that of the control devices (2.6%). We investigated this difference using grazing incidence wide-angle X-ray scattering, deep-level transient spectroscopy, scanning photoelectron microscopy, and high-resolution photoemission spectroscopy. The addition of I3- was found to reduce the amounts of hydroxide and Ox in the halide perovskites (HPs), affecting the migration of defects and the structural transformation of the HPs.

4.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218825

RESUMO

There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm-2 and a Tafel slope of 120 mV dec-1 with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis.

5.
Adv Sci (Weinh) ; 9(28): e2201648, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35863915

RESUMO

A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm-1 ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li5.5 PS4.5 Cl0.89 Br0.61 ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 ), which exhibits an ionic conductivity (σion ) of 6.70 mS cm-1 and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 to a humid atmosphere results in the least amount of H2 S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni0.9 Co0.05 Mn0.05 )O2 cathode and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li5.5 PS4.5 Cl0.89 Br0.61 and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.

6.
Phys Chem Chem Phys ; 12(46): 15172-80, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20931113

RESUMO

In surface science, much effort has gone into obtaining a deeper understanding of the size-selectivity of nanocatalysts. In this article, electronic and chemical properties of various model catalysts consisting of Au are reported. Au supported by oxide surfaces becomes inert towards chemisorption and oxidation as the particle size became smaller than a critical size (2-3 nm). The inertness of these small Au nanoparticles is due to the electron-deficient nature of smaller Au nanoparticles, which is a result of metal-substrate charge transfer. Properties of Au clusters smaller than ∼20 atoms were shown to be non-scalable, i.e., every atom can drastically change the chemical properties of the clusters. Moreover, clusters with the same size can show dissimilar properties on various substrates. These recent endeavours show that the activity of a catalyst can be tuned by varying the substrate or by varying the cluster size on an atom-by-atom basis.

7.
Chemphyschem ; 10(8): 1270-3, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19326381

RESUMO

Smaller nonmetallic nanoparticles are more inert: Metal-insulator transition of Au nanoparticles on silica is closely related to the metal-support charge transfer, which has a strong influence on chemisorption reactivity of Au. Smaller nonmetallic Au nanoparticles are more resistant towards butanethiol chemisorption [picture and graph: see text].The size-dependent variation of the electronic and chemical properties of Au nanoparticles formed on native Si oxide surfaces is investigated using synchrotron radiation photoemission spectroscopy and ultraviolet photoelectron spectroscopy. The adsorption reactivity toward butanethiol adsorption initially increases with decreasing particle size; however, the reactivity of Au nanoparticles becomes gradually lower below a size of approximately 0.8 nm. The photoemission spectral changes suggest a metal-insulator transition, accompanied by negative charge transfer from the nanoparticles to the support, which may be the source of the chemical inertness of small Au nanoparticles.

8.
Nanoscale Adv ; 1(7): 2523-2528, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132714

RESUMO

New types of functional material structures will emerge if the shape and properties are controlled in three-dimensional nanodevices. Possible applications of these would be nanoelectronics and medical systems. Magnetic nanoparticles (MNPs) are especially important in electronics such as magnetic storage, sensors, and spintronics. Also, in those that are used as magnetic resonance imaging contrasts, and tissue specific therapeutic agents, as well as in the labeling and sorting of cells, drug delivery, separation of biochemical products, and in other medical applications. Most of these applications require MNPs to be chemically stable, uniform in size, and controllable in terms of their magnetic properties and shape. In this paper three new functions of iron (Fe)-based nanoparticles are reported: shape transformation, oxidation prevention, and self-alignment. The shape of the Fe nanoparticles could be controlled by changing their oxidation states and properties by using a nanocarbon coating. Full field X-ray microscopy using synchrotron radiation revealed controllable magnetic properties of MNPs at the L3 edge which depended on the oxidation states. Then, inkjet printing was successfully performed to deposit a uniform layer of MNPs by the size.

9.
ACS Nano ; 11(3): 3207-3212, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28231429

RESUMO

Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.

10.
Nanoscale ; 5(17): 8210-4, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23863869

RESUMO

Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the π band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy (EF) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about -0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the EF by ~0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and that the electron transfer is limited to that between the Shockley surface state of Cu(111) and the π band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains (9.6° and 8.4°), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

11.
Sci Rep ; 3: 2725, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24100763

RESUMO

For graphene to be used in semiconductor applications, a 'wide energy gap' of at least 0.5 eV at the Dirac energy must be opened without the introduction of atomic defects. However, such a wide energy gap has not been realized in graphene, except in the cases of narrow, chemically terminated graphene nanostructures with inevitable edge defects. Here, we demonstrated that a wide energy gap of 0.74 eV, which is larger than that of germanium, could be opened in uniform monolayer graphene without the introduction of atomic defects into graphene. The wide energy gap was opened through the adsorption of self-assembled twisted sodium nanostrips. Furthermore, the energy gap was reversibly controllable through the alternate adsorption of sodium and oxygen. The opening of such a wide energy gap with minimal degradation of mobility could improve the applicability of graphene in semiconductor devices, which would result in a major advancement in graphene technology.

12.
Rev Sci Instrum ; 81(6): 063702, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590241

RESUMO

A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components.

13.
ACS Nano ; 4(9): 4997-5002, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20815364

RESUMO

Most researchers expect extreme ultraviolet lithography (EUVL) to be used to create patterns below 32 nm in semiconductor devices. An ultrathin EUV photoresist (PR) layer a few nanometers thick is required to further reduce the minimum feature size. Here, we show for the first time that pentacene molecular layers can be employed as a new EUV resist. Nanometer-scale dots and lines have been successfully realized using the new molecular resist. We clearly show the mechanism that forms the nanopatterns using a scanning photoemission microscope, EUV interference lithography, an atomic force microscope, and photoemission spectroscopy. The molecular PR has several advantages over traditional polymer EUV PRs. For example, it has high thermal/chemical stability, negligible outgassing, the ability to control the height and width on the nanometer scale, fewer residuals, no need for a chemical development process and thus a reduction of chemical waste when making nanopatterns. Besides, it can be applied to any substrate to which pentacene bonds chemically, such as SiO2, SiN, and SiON, which are important films in the semiconductor device industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA