Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 5): 923-933, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526993

RESUMO

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kß XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kß emission core-hole lifetime.

2.
J Synchrotron Radiat ; 29(Pt 5): 1309-1317, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073891

RESUMO

The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.


Assuntos
Análise de Dados , Aprendizado de Máquina não Supervisionado , Radiografia , Software , Raios X
3.
Langmuir ; 36(35): 10565-10576, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787022

RESUMO

The crystallization mechanism of transition-metal oxides (TMOs) in a solution was examined based on ZnO crystallization using in-situ x-ray absorption fine structure (XAFS) measurements at the Zn K edge and semi-empirical quantum chemistry (SEQC) simulations. The XAFS results quantitatively determine the local structural and chemical properties around a zinc atom at successive stages from Zn(NO3)2 to ZnO in an aqueous solution. The results also show that a zinc atom in Zn(NO3)2 ions dissolves in a solution and bonds with approximately three oxygen atoms at room temperature (RT). When hexamethylenetetramine (C6H12N4) is added to the solution at RT, a stable Zn-O complex consisting of six Zn(OH)2s is formed, which is a seed of ZnO crystals. The Zn-O complexes partially and fully form into a wurtzite ZnO at 60 and 80 °C, respectively. Based on the structural properties of Zn-O complexes determined by extended-XAFS (EXAFS), SEQC simulations clarify that Zn-O complexes consecutively develop from a linear structure to a polyhedral complex structure under the assistance of hydroxyls (OH-s) in an aqueous solution. In a solution with a sufficient concentration of OH-s, ZnO spontaneously grows through the merging of ZnO seeds (6Zn(OH)2s), reducing the total energy by the reactions of OH-s. ZnO crystallization suggests that the crystal growth of TMO can only be ascribed to Ostwald ripening when it exactly corresponds to the size growth of TMO particles.

4.
Sci Rep ; 12(1): 13652, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953693

RESUMO

The heterogeneous catalysts of Pt/transition-metal oxides are typically synthesized through calcination at 500 °C, and Pt nanoparticles are uniformly and highly dispersed when hydrogen peroxide (H2O2) is applied before calcination. The influence of H2O2 on the dispersion and the stability of Pt nanoparticles on titania-incorporated fumed silica (Pt/Ti-FS) supports was examined using X-ray absorption fine structure (XAFS) measurements at the Pt L3 and Ti K edges as well as density functional theory (DFT) calculations. The local structural and chemical properties around Pt and Ti atoms of Pt/Ti-FS with and without H2O2 treatment were monitored using in-situ XAFS during heating from room temperature to 500 °C. XAFS revealed that the Pt nanoparticles of H2O2-Pt/Ti-FS are highly stable and that the Ti atoms of H2O2-Pt/Ti-FS support form into a distorted-anatase TiO2. DFT calculations showed that Pt atoms bond more stably to oxidized-TiO2 surfaces than they do to bare- and reduced-TiO2 surfaces. XAFS measurements and DFT calculations clarified that the presence of extra oxygen atoms due to the H2O2 treatment plays a critical role in the strong bonding of Pt atoms to TiO2 surfaces.

5.
Sci Rep ; 11(1): 3135, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542342

RESUMO

VO2 is a highly correlated electron system which has a metal-to-insulator transition (MIT) with a dramatic change of conductivity accompanied by a first-order structural phase transition (SPT) near room temperature. The origin of the MIT is still controversial and there is ongoing debate over whether an SPT induces the MIT and whether the Tc can be engineered using artificial parameters. We examined the electrical and local structural properties of Cr- and Co-ion implanted VO2 (Cr-VO2 and Co-VO2) films using temperature-dependent resistance and X-ray absorption fine structure (XAFS) measurements at the V K edge. The temperature-dependent electrical resistance measurements of both Cr-VO2 and Co-VO2 films showed sharp MIT features. The Tc values of the Cr-VO2 and Co-VO2 films first decreased and then increased relative to that of pristine VO2 as the ion flux was increased. The pre-edge peak of the V K edge from the Cr-VO2 films with a Cr ion flux ≥ 1013 ions/cm2 showed no temperature-dependent behavior, implying no changes in the local density of states of V 3d t2g and eg orbitals during MIT. Extended XAFS (EXAFS) revealed that implanted Cr and Co ions and their tracks caused a substantial amount of structural disorder and distortion at both vanadium and oxygen sites. The resistance and XAFS measurements revealed that VO2 experiences a sharp MIT when the distance of V-V pairs undergoes an SPT without any transitions in either the VO6 octahedrons or the V 3d t2g and eg states. This indicates that the MIT of VO2 occurs with no changes of the crystal fields.

6.
Sci Rep ; 7(1): 14802, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093503

RESUMO

We used temperature-dependent x-ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO2 films. A direct comparison of the simultaneously-measured resistance and XAFS regarding the VO2 films showed that the thermally-driven structural transition occurred prior to the resistance transition during a heating, while  this change simultaneously occured during a cooling. Extended-XAFS (EXAFS) analysis revealed significant increases of the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO2 that are due to the phonons of the V-V arrays along the same direction in a metallic phase. The existance of a substantial amount of structural disorder on the V-V pairs along the c-axis in both M1 and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder that was observed on all atomic sites at the structural phase transition prevents the migration of the V 3d1 electrons, resulting in a Mott insulator in the M2-phase VO2.

7.
J Nanosci Nanotechnol ; 15(7): 5306-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373129

RESUMO

We investigated the growth mechanism of ZnO(001) nanorods on SrTiO3(001) substrates. In the beginning of ZnO growth, a ZnO(110) film was developed on SrTiO3 substrates and then (001)-oriented ZnO nanorods grew on the ZnO(110) film. The strain energy of ZnO(110) growth on SrTiO3(001) planes was approximately 2.7 x 10(8) J/m3 whereas it was estimated to be ~1.61 x 10(9) J/m3 for ZnO(001) directly grown on SrTiO3(001) planes using Young's modulus of elasticity. Stress due to the lattice mismatch between ZnO and SrTiO3 was mostly relaxed in several monolayers and then ZnO(001) nanorods were finally formed along their easy growth directions. Keywords: ZnO Nanorod, Hetero-Interface, Local Structural, Growth Mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA