Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768958

RESUMO

Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.


Assuntos
Antioxidantes , Degeneração Macular , Idoso , Humanos , Antioxidantes/metabolismo , Degeneração Macular/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Qualidade de Vida , Epitélio Pigmentado da Retina/metabolismo , RNA Longo não Codificante/genética
2.
FASEB J ; 34(5): 6437-6448, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32190930

RESUMO

DNA damage accumulates in aged postmitotic retinal pigment epithelium (RPE) cells, a phenomenon associated with the development of age-related macular degeneration. In this study, we have experimentally induced DNA damage by ultraviolet B (UVB) irradiation in interleukin-1α (IL-1α)-primed ARPE-19 cells and examined inflammasome-mediated signaling. To reveal the mechanisms of inflammasome activation, cells were additionally exposed to high levels of extracellular potassium chloride, n-acetyl-cysteine, or mitochondria-targeted antioxidant MitoTEMPO, prior to UVB irradiation. Levels of interleukin-18 (IL-18) and IL-1ß mRNAs were detected with qRT-PCR and secreted amounts of IL-1ß, IL-18, and caspase-1 were measured with ELISA. The role of nucleotide-binding domain and leucine-rich repeat pyrin containing protein 3 (NLRP3) in UVB-induced inflammasome activation was verified by using the NLRP3-specific siRNA. Reactive oxygen species (ROS) levels were measured immediately after UVB exposure using the cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2 DCFDA) indicator, the levels of cyclobutane pyrimidine dimers were assayed by cell-based ELISA, and the extracellular levels of adenosine triphosphate (ATP) determined using a commercial bioluminescence assay. We found that pro-IL-18 was constitutively expressed by ARPE-19 cells, whereas the expression of pro-IL-1ß was inducible by IL-1α priming. UVB induced the release of mature IL-18 and IL-1ß but NLRP3 contributed only to the secretion of IL-1ß. At the mechanistic level, the release of IL-1ß was regulated by K+ efflux, whereas the secretion of IL-18 was dependent on ROS production. As well as K+ efflux, the cells released ATP following UVB exposure. Collectively, our data suggest that UVB clearly stimulates the secretion of mature IL-18 as a result of ROS induction, and this response is associated with DNA damage. Moreover, in human RPE cells, K+ efflux mediates the UVB-activated NLRP3 inflammasome signaling, leading to the processing of IL-1ß.


Assuntos
Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Raios Ultravioleta , Dano ao DNA , Reparo do DNA , Humanos , Inflamassomos/imunologia , Inflamassomos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/efeitos da radiação , Transdução de Sinais
3.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502084

RESUMO

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.


Assuntos
Degeneração Macular/genética , RNA Longo não Codificante/genética , Animais , Epigênese Genética , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , RNA Longo não Codificante/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567500

RESUMO

Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1α and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch's membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1α genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease.


Assuntos
Senescência Celular , Transição Epitelial-Mesenquimal , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Epitélio Pigmentado da Retina/patologia , Animais , Degeneração Macular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183173

RESUMO

Increased oxidative stress and mitochondrial damage are observed in protein aggregation diseases, such as age-related macular degeneration (AMD). We have recently reported elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in the retinal pigment epithelial cells (RPE) of the dry AMD-resembling NFE2L2/PGC1α double knockout (dKO) mouse model. Here, we provide evidence of a disturbance in the autolysosomal machinery handling mitochondrial clearance in the RPE cells of one-year-old NFE2L2/PGC1α-deficient mice. Confocal immunohistochemical analysis revealed an upregulation of autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as numerous mitophagy markers, such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN) together with damaged mitochondria. However, we detected no evidence of increased autolysosome formation in transmission electron micrographs or of colocalization of lysosomal marker LAMP2 (lysosome-associated membrane protein 2) and the mitochondrial marker ATP synthase ß in confocal micrographs. Interestingly, we observed an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells together with autofluorescence aggregates. Our results reveal that there is at least a relative decrease of mitophagy in the RPE cells of NFE2L2/PGC1α dKO mice. This further supports the hypothesis that mitophagy is a putative therapy target in AMD-like pathology.


Assuntos
Degeneração Macular/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Deleção de Genes , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Degeneração Macular/genética , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Quinases/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo
6.
Cytokine ; 116: 70-77, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685605

RESUMO

Age-related macular degeneration (AMD) is a complex eye disease in which decline in autophagy leads to the accumulation of sequestosome 1/p62 (SQSTM1/p62)-labeled waste material inside the retinal pigment epithelial (RPE) cells, and the condition results in activation of the inflammasome signaling and IL-1ß secretion. Here, we have studied the role of SQSTM1/p62 in the production of IL-6, IL-8, and MCP-1 in the presence or absence of IL-1ß. SQSTM1/p62 was either overexpressed or silenced in ARPE-19 cells, which were then exposed to IL-1ß. Alternatively, bafilomycin A was used to demonstrate the functional decline of autophagy with increased SQSTM1/p62 levels. The protein concentration of SQSTM1/p62 was measured using the western blot technique, and interleukin levels were determined by ELISA. In IL-1ß-loaded RPE cells, SQSTM1/p62 depletion and overexpression increased the production of MCP-1 and IL-8, respectively. Neither knock-down nor overexpression of SQSTM1/p62 induced the release of IL-6. Our data suggest that SQSTM1/p62 is a significant factor in inflammatory responses, especially following the inflammasome activation.


Assuntos
Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Proteína Sequestossoma-1/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-8/metabolismo , Macrolídeos/farmacologia , Epitélio Pigmentado da Retina/citologia
7.
Cell Mol Life Sci ; 75(16): 2991-3008, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777261

RESUMO

Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle's homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.


Assuntos
Homeostase , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Envelhecimento/genética , Envelhecimento/metabolismo , Dano ao DNA , Humanos , Degeneração Macular/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo
8.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752195

RESUMO

Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.


Assuntos
Degeneração Macular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Progressão da Doença , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo
9.
Int J Mol Sci ; 18(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534814

RESUMO

The impairment of autophagic and proteasomal cleansing together with changes in pigmentation has been documented in retinal pigment epithelial (RPE) cell degeneration. However, the function and co-operation of these mechanisms in melanosome-containing RPE cells is still unclear. We show that inhibition of proteasomal degradation with MG-132 or autophagy with bafilomycin A1 increased the accumulation of premelanosomes and autophagic structures in human embryonic stem cell (hESC)-derived RPE cells. Consequently, upregulation of the autophagy marker p62 (also known as sequestosome-1, SQSTM1) was confirmed in Western blot and perinuclear staining. Interestingly, cells treated with the adenosine monophosphatedependent protein kinase activator, AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), decreased the proteasome inhibitor-induced accumulation of premelanosomes, increased the amount of autophagosomes and eradicated the protein expression of p62 and LC3 (microtubule-associated protein 1A/1B-light chain 3). These results revealed that autophagic machinery is functional in hESC-RPE cells and may regulate cellular pigmentation with proteasomes.


Assuntos
Autofagia/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Leupeptinas/farmacologia , Macrolídeos/farmacologia , Pigmentação/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Linhagem Celular , Humanos , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Epitélio Pigmentado da Retina/citologia
10.
J Biol Chem ; 288(8): 5973-83, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23303191

RESUMO

Mammals have three homologous genes encoding proteins with hyaluronan synthase activity (Has1-3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid. To compare the properties of these isoenzymes, COS-1 cells, with minor endogenous hyaluronan synthesis, were transfected with human Has1-3 isoenzymes. HAS1 was almost unable to secrete hyaluronan or form a hyaluronan coat, in contrast to HAS2 and HAS3. This failure of HAS1 to synthesize hyaluronan was compensated by increasing the cellular content of UDP-N-acetyl glucosamine by ∼10-fold with 1 mm glucosamine in the growth medium. Hyaluronan synthesis driven by HAS2 was less affected by glucosamine addition, and HAS3 was not affected at all. Glucose-free medium, leading to depletion of the UDP-sugars, markedly reduced hyaluronan synthesis by all HAS isoenzymes while raising its concentration from 5 to 25 mm had a moderate stimulatory effect. The results indicate that HAS1 is almost inactive in cells with low UDP-sugar supply, HAS2 activity increases with UDP-sugars, and HAS3 produces hyaluronan at high speed even with minimum substrate content. Transfected Has2 and particularly Has3 consumed enough UDP-sugars to reduce their content in COS-1 cells. Comparison of different human cell types revealed ∼50-fold differences in the content of UDP-N-acetylhexosamines and UDP-glucuronic acid, correlating with the expression level of Has1, suggesting cellular coordination between Has1 expression and the content of UDP-sugars.


Assuntos
Acetilglucosamina/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Difosfato de Uridina/química , Animais , Aorta/citologia , Células COS , Chlorocebus aethiops , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Humanos , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Inflamação , Isoenzimas , Modelos Biológicos , Neoplasias/enzimologia
11.
Biochim Biophys Acta ; 1833(3): 503-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23220125

RESUMO

Macroautophagy is an important route in cellular maintenance, in the breakdown and reuse of intracellular materials. It is closely related to endocytosis, the means by which the cell can absorb extracellular material, as both macroautophagy and endocytosis have converging steps and common participating molecules. The point where autophagosomes and endosomes fuse with lysosomes to permit for the final degradation of their contents is important. One of the most substantial molecules in the maturation of autophagosomes/endosomes is Rab7, a member of small GTPases. Rab7 designates the maturation of endosomes and also autophagosomes, directing the trafficking of cargos along microtubules, and finally, participating in the fusion step with lysosomes. Rab7 is an effective multifunctional regulator of autophagy and endocytosis. Since many aggregation-based diseases, e.g. age-related macular degeneration of the eye (AMD) and Alzheimer's disease are due of malfunctioning in the autophagic process, the management of Rab7 activity might hold potential as a therapeutic target against these diseases.


Assuntos
Autofagia , Fenômenos Fisiológicos Celulares , Endossomos/metabolismo , Degeneração Macular/metabolismo , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Humanos
12.
Mol Vis ; 20: 760-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940030

RESUMO

PURPOSE: In this work, we investigated the ability of pinosylvin (PS), 3,5-dihydroxy-trans-stilbene, to modulate oxidative stress in human RPE cells. PS, a stilbenoid polyphenol, occurs in high concentrations in bark byproducts and therefore represents an attractive bioactive compound for health-promoting applications. METHODS: First, we evaluated the toxicity range of PS by exposing ARPE-19 cells to 0.1-200 µM concentrations of PS for 24 h followed by the cell viability test. In the next stage, the ARPE-19 cells were preincubated in PS for 24 h followed by hydroquinone (HQ) exposure without PS for another 24 h. The cell viability test was conducted after HQ exposure. To elucidate the potential mechanisms behind PS-mediated protection against oxidative stress, the ARPE-19 cells were treated with 5 µM PS for 6 h, and mRNA was extracted at four time points (2 h, 6 h, 12 h, 24 h) to determine changes in the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), sequestosome 1 (p62/SQSTM1), heme oxygenase-1 (HO-1), and glutathione S-transferase pi 1 (GSTP1) genes. To clarify the molecular mechanism behind PS-mediated protection further, the ARPE-19 cells were transfected with p62 and Nrf2 siRNAs for 24 h, and the roles of p62, Nrf2, and its target gene HO-1 in conferring protection against oxidative stress were studied with quantitative real-time PCR (qRT-PCR) and the cell viability test. RESULTS: PS treatment at concentrations of 5 and 10 µM significantly enhanced cell survival from oxidative stress. The expression levels of an enzyme with antioxidative, anti-inflammatory, and immunomodulatory properties, HO-1, were increased by PS treatment and correlated strongly with cell survival. PS treatment did not elevate the expression levels of Nrf2 or its target genes, p62 or GSTP1, even though it had a clear effect on the expression of HO-1, another gene controlled by Nrf2. RNA interference analysis further confirmed the important role of Nrf2 and HO-1 in PS-mediated protection against oxidative stress whereas the role of p62 seemed to be insignificant at the gene expression and cell viability levels. CONCLUSIONS: Our results suggest that PS treatment conferred protection against oxidative stress through the induction of HO-1 in human RPE cells. Consequently, PS-stilbene compounds, which can be isolated in significant amounts from bark waste, may possess health-promoting properties against aging-related diseases associated with oxidative stress such as age-related macular degeneration (AMD) and Alzheimer's disease. These natural compounds may offer opportunities for high-value use of bark waste in diverse health-related applications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoproteção/efeitos dos fármacos , Células Epiteliais/patologia , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Estilbenos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citoproteção/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Proteína Sequestossoma-1 , Estilbenos/química , Estilbenos/toxicidade , Fatores de Tempo
13.
Histochem Cell Biol ; 137(1): 107-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072421

RESUMO

CD44 is a ubiquitous cell surface glycoprotein, involved in important cellular functions including cell adhesion, migration, and modulation of signals from cell surface receptors. While most of these CD44 functions are supposed to involve hyaluronan, relatively little is known about the contribution of CD44 to hyaluronan maintenance and organization on cell surface, and the role of CD44 in hyaluronan synthesis and catabolism. Blocking hyaluronan binding either by CD44 antibodies, CD44-siRNA or hyaluronan decasaccharides (but not hexasaccharides) removed most of the hyaluronan from the surfaces of both human (HaCaT) and mouse keratinocytes, resembling results on cells from CD44⁻/⁻ animals. In vitro, compromising CD44 function led to reduced and increased amounts, respectively, of intracellular and culture medium hyaluronan, and specific accumulation below the cells. In vivo, CD44-deficiency caused no marked differences in hyaluronan staining intensity or localization in the fetal skin or in adult ear skin, while tail epidermis showed a slight reduction in epidermal hyaluronan staining intensity. However, CD44-deficient tail skin challenged with retinoic acid or tape stripping revealed diffuse accumulation of hyaluronan in the superficial epidermal layers, normally negative for hyaluronan. Our data indicate that CD44 retains hyaluronan in the keratinocyte pericellular matrix, a fact that has not been shown unambiguously before, and that hyaluronan abundance in the absence of CD44 can result in hyaluronan trapping in abnormal locations possibly interfering there with normal differentiation and epidermal barrier function.


Assuntos
Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Receptores de Hialuronatos/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Reação em Cadeia da Polimerase em Tempo Real
14.
J Biomed Biotechnol ; 2011: 798052, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20981255

RESUMO

Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration.


Assuntos
Núcleo Celular/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Histona Desacetilases/metabolismo , Epitélio Pigmentado Ocular/citologia , Estrutura Quaternária de Proteína , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Benzoquinonas/farmacologia , Extratos Celulares , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/ultraestrutura , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Lactamas Macrocíclicas/farmacologia , Leupeptinas/farmacologia , Ubiquitinação/efeitos dos fármacos
15.
Pharmacol Res ; 64(5): 501-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21683142

RESUMO

Elevated nuclear factor kappa B (NF-κB) activity and interleukin-6 (IL-6) secretion participates in the pathology of several age and inflammatory-related diseases, including age-related macular degeneration (AMD), in which retinal pigment epithelial cells are the key target. Recent findings reveal that heat shock protein 70 (Hsp70) may affect regulation of NF-κB. In the current study, effects of Hsp70 expression on NF-κB RelA/p65 activity were evaluated in human retinal pigment epithelial cells (ARPE-19) by using celastrol, a novel anti-inflammatory compound. Anti-inflammatory properties of celastrol were determined by measuring expression levels of IL-6 and endogenous NF-κB levels during lipopolysaccharide (LPS) exposure by using enzyme-linked immunosorbent assays (ELISA). Cell viability was measured by MTT and LDH assay, and Hsp70 expression levels were analyzed by Western blotting. ARPE-19 cells were transfected with hsp70 small interfering RNA (siRNA) in order to attenuate Hsp70 expression and activity of NF-κB RelA/p65 was measured using NF-κB consensus bound ELISA. Simultaneous exposures to LPS and celastrol reduced IL-6 expression levels as well as activity of phosphorylated NF-κB at serine 536 (Ser536) in ARPE-19 cells when compared to LPS exposure alone. In addition, inhibition of NF-κB RelA/p65 activity by celastrol was attenuated when Hsp70 response was silenced by siRNA. Favorable anti-inflammatory concentrations of celastrol showed no signs of cytotoxic response. Our findings reveal that celastrol is a novel plant compound which suppresses innate immunity response in human retinal pigment epithelial cells via NF-κB and Hsp70 regulation, and that Hsp70 is a critical regulator of NF-κB.


Assuntos
Anti-Inflamatórios/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Imunidade Inata/efeitos dos fármacos , NF-kappa B/imunologia , Epitélio Pigmentado Ocular/citologia , Triterpenos/imunologia , Linhagem Celular , Humanos , Triterpenos Pentacíclicos , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/imunologia , Tripterygium/química
16.
Ageing Res Rev ; 67: 101260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516915

RESUMO

Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.


Assuntos
Degeneração Macular , MicroRNAs , Idoso , Autofagia , Humanos , Degeneração Macular/genética , Degeneração Macular/terapia , MicroRNAs/genética , Epitélio Pigmentado da Retina
17.
Oxid Med Cell Longev ; 2021: 8028427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917233

RESUMO

Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.


Assuntos
Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Doenças Retinianas/prevenção & controle , Estilbenos/farmacologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Knockout , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
18.
Biology (Basel) ; 10(7)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34356477

RESUMO

Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation.

19.
Mol Vis ; 16: 1399-414, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20680098

RESUMO

PURPOSE: The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress-induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. Recently, p62/sequestosome 1 (p62) has been shown to be a key player linking the proteasomal and lysosomal clearance systems. In the present study, the functional roles of p62 and HSP70 were evaluated in conjunction with proteasome inhibitor-induced autophagy in human RPE cells (ARPE-19). METHODS: The p62, HSP70, and ubiquitin protein levels and localization were analyzed by western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. RESULTS: Proteasome inhibition evoked the accumulation of perinuclear aggregates that strongly colocalized with p62 and HSP70. The p62 perinuclear accumulation was time- and concentration-dependent after MG-132 proteasome inhibitor loading. The silencing of p62, rather than Hsp70, evoked suppression of autophagy, when related to decreased LC3-II levels after bafilomycin treatment. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently, we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here, we demonstrate that p62 mRNA silencing has similar effects on cellular viability. CONCLUSIONS: Our findings open new avenues for understanding the mechanisms of proteolytic processes in retinal cells, and could be useful in the development of novel therapies targeting p62 and HSP70.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Leupeptinas/farmacologia , Inibidores de Proteassoma , Epitélio Pigmentado da Retina/citologia , Western Blotting , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína Sequestossoma-1
20.
Genes (Basel) ; 11(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172148

RESUMO

Age-related macular degeneration is an eye disease that is the main cause of legal blindness in the elderly in developed countries. Despite this, its pathogenesis is not completely known, and many genetic, epigenetic, environmental and lifestyle factors may be involved. Vision loss in age-related macular degeneration (AMD) is usually consequence of the occurrence of its wet (neovascular) form that is targeted in the clinic by anti-VEGF (vascular endothelial growth factor) treatment. The wet form of AMD is associated with the accumulation of cellular waste in the retinal pigment epithelium, which is removed by autophagy and the proteosomal degradation system. In the present work, we searched for the association between genotypes and alleles of single nucleotide polymorphisms (SNPs) of autophagy-related genes and wet AMD occurrence in a cohort of Finnish patients undergoing anti-VEGF therapy and controls. Additionally, the correlation between treatment efficacy and genotypes was investigated. Overall, 225 wet AMD patients and 161 controls were enrolled in this study. Ten SNPs (rs2295080, rs11121704, rs1057079, rs1064261, rs573775, rs11246867, rs3088051, rs10902469, rs73105013, rs10277) in the mTOR (Mechanistic Target of Rapamycin), ATG5 (Autophagy Related 5), ULK1 (Unc-51-Like Autophagy Activating Kinase 1), MAP1LC3A (Microtubule Associated Protein 1 Light Chain 3 α), SQSTM1 (Sequestosome 1) were analyzed with RT-PCR-based genotyping. The genotype/alleles rs2295080-G, rs11121704-C, rs1057079-C and rs73105013-T associated with an increased, whereas rs2295080-TT, rs2295080-T, rs11121704-TT, rs1057079-TT, rs1057079-T, rs573775-AA and rs73105013-C with a decreased occurrence of wet AMD. In addition, the rs2295080-GG, rs2295080-GT, rs1057079-TT, rs11246867-AG, rs3088051-CC and rs10277-CC genotypes were a positively correlated cumulative number of anti-VEGF injections in 2 years. Therefore, variability in autophagy genes may have an impact on the risk of wet AMD occurrence and the efficacy of anti-VEGF treatment.


Assuntos
Autofagia/genética , Degeneração Macular/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Proteína 5 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Finlândia , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degeneração Macular/fisiopatologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Polimorfismo de Nucleotídeo Único/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Proteína Sequestossoma-1/genética , Serina-Treonina Quinases TOR/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA