Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 7(7): 5670-5678, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224328

RESUMO

Graphene-enhanced Raman scattering (GERS) produces enhancement of the Raman signal, which is based on chemical rather than electromagnetic mechanism such as in the surface-enhanced Raman scattering. Graphene oxide, amino- and guanidine-functionalized graphene oxide, exfoliated graphene, and commercial graphene nanoplatelets have been used to investigate the GERS response with the change of graphene properties. Different graphene nanostructures have been embedded into organic-inorganic microporous films to build a platform for the fast and sensitive detection of pesticides in water. The graphene nanostructures vary in the number of layers, lateral size, degree of oxidation, and surface functionalization. The GERS performances of the graphene nanostructures cast on silicon substrates and embedded in the nanocomposite films have been comparatively evaluated. After casting a few droplets of the pesticide aqueous solution on the graphene nanostructures, the Raman band enhancements of the analytes have been measured. In the nanocomposite films, the characteristic Raman bands originating from pesticides such as paraoxon, parathion, and glyphosate could be traced at concentrations below 10-7, 10-5, and 10-4 M, respectively. The results show that the surface functionalization reduces the GERS effect because it increases the ratio between the sp3 carbon and sp2 carbon. On the other hand, the comparison among different types of graphenes shows that the monolayers are more efficient than the few-layer nanostructures in enhancing the Raman signal.

2.
Materials (Basel) ; 14(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361531

RESUMO

Due to the ever-increasing limitations of the use of lead-based materials, the manufacturing of lead-free piezoceramics with competitive piezoelectric properties and established nontoxicity is considered a priority for the scientific and industrial community. In this work, a lead-free system based on sodium potassium niobate (KNN), opportunely modified with MgNb2O6 (MN), was prepared through a combination of a mechanochemical activation method and air sintering, and its toxicity was evaluated. The effect of the mechanical processing on the microstructure refinement of the processed powders was established by X-ray diffraction and the average crystallite size content of the Nb2O5 species was evaluated. The experimental evidence was rationalized using a phenomenological model which permitted us to obtain the amount of powder processed at each collision and to optimize the activation step of the pre-calcined reagents. This influenced the final density and piezoresponse of the as-sintered pellets, which showed optimal properties compared with other KNN systems. Their toxicological potential was evaluated through exposure experiments to the pulverized KNN-based pellets, employing two widely used human and environmental cellular models. The in vitro assays proved, under the selected conditions, the absence of cytotoxicity of KNN-bases systems here studied.

3.
ChemistryOpen ; 10(8): 798-805, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34402600

RESUMO

In this work, piezoceramics of the lead-free composition K0.5 Na0.5 NbO3 with an increasing amount of MgNb2 O6 (0, 0.5, 1, 2 wt.%) were prepared through conventional solid-state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2 O6 . Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium-based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well-packed structure with homogeneous grain size of ∼2.72 µm. Dielectric and piezoelectric properties become optimal for 0.5-1.0 wt.% of MgNb2 O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33 =97 pC N-1 ; d31 =-36.99 pC N-1 and g31 =-14.04×10-3  mV N-1 ; Qp (d31 )=76 and Qp (g31 )=69) or enhanced electromechanical coupling factors (kp =29.06 % and k31 =17.25 %).

4.
Dalton Trans ; 49(48): 17584-17593, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33232412

RESUMO

Due to the considerable interest in vanadium niobium oxides as a lithium storage material, the kinetics and transformation processes of the V2O5-5Nb2O5 system have been investigated by in situ synchrotron powder X-ray diffraction. The diffraction data after the thermal treatments selected with a view on the most significant features were supplemented with specific ex situ experiments conducted using a laboratory rotating anode X-ray diffractometer. The morphological changes of the mixed powders assuming an amorphous and nanocrystalline solid solution structure as a function of the temperature were inspected by scanning electron microscopy observations. The structural solution of the powder diffraction pattern of the phase recorded in situ at a temperature of about 700 °C was compatible with an orthorhombic crystal structure with the space group Amm2. The obtained lattice parameters for this structure were a = 3.965 Å; b = 17.395 Å, c = 17.742 Å, and the cell composition was V4Nb20O60, Pearson symbol oA84, and density = 4.10 g cm-3. In this structure, while the niobium atoms may be four-, five-, and six-fold coordinated by oxygen atoms, the vanadium atoms were six-fold or seven-fold coordinated. At the temperature of 800 °C and just above, the selected 1 : 2 and 1 : 3 V2O5-Nb2O5 compositions, respectively, returned mostly a tetragonal VNb9O25 phase, in line with earlier observations conducted for determination of the stability phase diagram of such quasi-binary systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA