RESUMO
Rabies is a fatal zoonotic infection of the central nervous system of mammals and has been known to humans for millennia. The etiological agent, is a neurotropic RNA virus in the order Mononegavirales, family Rhabdoviridae, genus Lyssavirus. There are currently accepted to be two cycles for rabies transmission: the urban cycle and the sylvatic cycle. The fact that both cycles originated from a common RABV or lyssavirus ancestor and the adaptive divergence that occurred since then as this ancestor virus adapted to a wide range of fitness landscapes represented by reservoir species in the orders Carnivora and Chiroptera led to the emergence of the diverse RABV lineages currently found in the sylvatic and urban cycles. Here we study full genome phylogenies and the time to the most recent common ancestor (TMRCA) of the RABVs in the sylvatic and urban cycles. Results show that there were differences between the nucleotide substitution rates per site per year for the same RABV genes maintained independently in the urban and sylvatic cycles. The results identify the most suitable gene for phylogenetic analysis, heterotachy among RABV genes and the TMRCA for the two cycles.
RESUMO
Many aspects of the evolutionary process of tumorigenesis that are fundamental to cancer biology and targeted treatment have been challenging to reveal, such as the divergence times and genetic clonality of metastatic lineages. To address these challenges, we performed tumor phylogenetics using molecular evolutionary models, reconstructed ancestral states of somatic mutations, and inferred cancer chronograms to yield three conclusions. First, in contrast to a linear model of cancer progression, metastases can originate from divergent lineages within primary tumors. Evolved genetic changes in cancer lineages likely affect only the proclivity toward metastasis. Single genetic changes are unlikely to be necessary or sufficient for metastasis. Second, metastatic lineages can arise early in tumor development, sometimes long before diagnosis. The early genetic divergence of some metastatic lineages directs attention toward research on driver genes that are mutated early in cancer evolution. Last, the temporal order of occurrence of driver mutations can be inferred from phylogenetic analysis of cancer chronograms, guiding development of targeted therapeutics effective against primary tumors and metastases.
Assuntos
Modelos Genéticos , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias/genética , Neoplasias/patologia , Oncogenes , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Evolução Molecular , Feminino , Variação Genética , Humanos , Funções Verossimilhança , Masculino , Filogenia , Fatores de TempoRESUMO
BACKGROUND: Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES: To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS: The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS: Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.
Assuntos
Códon/genética , Genoma Viral/genética , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia , Zika virus/genética , África , Ásia , Brasil/epidemiologia , Humanos , Pandemias , Filogenia , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologiaRESUMO
Using Ebolavirus genomic and epidemiological data, we conducted the first joint analysis in which both data types were used to fit dynamic transmission models for an ongoing outbreak. Our results indicate that transmission is clustered, highlighting a potential bias in medical demand forecasts, and provide the first empirical estimate of underreporting.
Assuntos
Surtos de Doenças , Ebolavirus/classificação , Ebolavirus/genética , Genoma Viral , Genótipo , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Análise por Conglomerados , Ebolavirus/isolamento & purificação , Humanos , Análise de SequênciaRESUMO
Rift Valley Fever virus (RVFV) is a member of Bunyaviridae family that causes a febrile disease affecting mainly ruminants and occasionally humans in Africa, with symptoms that range from mid to severe. RVFV has a tri-segmented ssRNA genome that permits reassortment and could generate more virulent strains. In this study, we reveal the importance of reassortment for RVFV evolution using viral gene genealogy inference and phylodynamics. We uncovered seven events of reassortment that originated RVFV lineages with discordant origins among segments. Moreover, we also found that despite similar selection regimens, the three segments have distinct evolutionary dynamics; the longer segment L evolves at a significant lower rate. Episodes of discordance between population size estimates per segment also coincided with reassortment dating. Our results show that RVFV segments are decoupled enough to have distinct demographic histories and to evolve under different molecular rates.
Assuntos
Evolução Biológica , Genoma Viral , Vírus Reordenados/genética , Vírus da Febre do Vale do Rift/genética , Variação Genética , Filogenia , Seleção Genética , Fatores de TempoRESUMO
Zika virus (ZIKV) is a mosquito-borne flavivirus first isolated in Uganda in 1947. Although entomological and virologic surveillance have reported ZIKV enzootic activity in diverse countries of Africa and Asia, few human cases were reported until 2007, when a Zika fever epidemic took place in Micronesia. In the context of West Africa, the WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever at Institut Pasteur of Dakar (http://www.pasteur.fr/recherche/banques/CRORA/) reports the periodic circulation of ZIKV since 1968. Despite several reports on ZIKV, the genetic relationships among viral strains from West Africa remain poorly understood. To evaluate the viral spread and its molecular epidemiology, we investigated 37 ZIKV isolates collected from 1968 to 2002 in six localities in Senegal and Côte d'Ivoire. In addition, we included strains from six other countries. Our results suggested that these two countries in West Africa experienced at least two independent introductions of ZIKV during the 20(th) century, and that apparently these viral lineages were not restricted by mosquito vector species. Moreover, we present evidence that ZIKV has possibly undergone recombination in nature and that a loss of the N154 glycosylation site in the envelope protein was a possible adaptive response to the Aedes dalzieli vector.
Assuntos
Evolução Molecular , Variação Genética , Infecção por Zika virus/virologia , Zika virus/genética , África Ocidental/epidemiologia , Animais , Análise por Conglomerados , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Zika virus/classificação , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologiaRESUMO
BACKGROUND: The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. RESULTS: We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. CONCLUSIONS: Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks.
Assuntos
Baculoviridae/genética , Evolução Molecular , Redes Reguladoras de Genes , Animais , Baculoviridae/fisiologia , Linhagem Celular , Sequência Conservada , Genes Virais/genética , Genômica , Cinética , Lepidópteros/virologia , Regiões Promotoras Genéticas/genética , Transcrição Gênica , TranscriptomaRESUMO
Previous studies indicate that the HIV-1 subtype C epidemic in southern Brazil was initiated by the introduction of a single founder strain probably originating from east Africa. However, the exact country of origin of such a founder strain as well as the origin of the subtype C viruses detected outside the Brazilian southern region remains unknown. HIV-1 subtype C pol sequences isolated in the southern, southeastern and central-western Brazilian regions (n = 209) were compared with a large number (n ~ 2,000) of subtype C pol sequences of African origin. Maximum-likelihood analyses revealed that most HIV-1 subtype C Brazilian sequences branched in a single monophyletic clade (CBR-I), nested within a larger monophyletic lineage characteristic of east Africa. Bayesian analyses indicate that the CBR-I clade most probably originated in Burundi and was introduced into the Paraná state (southern region) around the middle 1970s, after which it rapidly disseminated to neighboring regions. The states of Paraná and Santa Catarina have been the most important hubs of subtype C dissemination, and routine travel and spatial accessibility seems to have been the major driving forces of this process. Five additional introductions of HIV-1 subtype C strains probably originated in eastern (n = 2), southern (n = 2) and central (n = 1) African countries were detected in the Rio de Janeiro state (southeastern region). These results indicate a continuous influx of HIV-1 subtype C strains of African origin into Brazil and also unveil the existence of unrecognized transmission networks linking this country to east Africa.
Assuntos
Genótipo , Infecções por HIV/epidemiologia , HIV-1/classificação , HIV-1/genética , Brasil/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Migração Humana , Humanos , Filogenia , Filogeografia , Análise Espaço-Temporal , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genéticaRESUMO
BACKGROUND Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.
Assuntos
Proteínas não Estruturais Virais/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia , Brasil/epidemiologia , Códon , Genoma ViralRESUMO
Although some studies have shown diversity in HIV integrase (IN) genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes), 17 of subtype F (8 of which were found in recombinant genomes), 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2) that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL) or elvitegravir (EVG) resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS) indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population.
Assuntos
Infecções por HIV/virologia , Integrase de HIV/genética , HIV-1/genética , Recombinação Genética , Brasil/epidemiologia , Epidemias , Evolução Molecular , Infecções por HIV/epidemiologia , HIV-1/classificação , HIV-1/enzimologia , Humanos , Cadeias de Markov , Filogenia , Polimorfismo Genético , Análise de Sequência de DNARESUMO
Increasing public interest in science information in a digital and 2.0 science era promotes a dramatically, rapid and deep change in science itself. The emergence and expansion of new technologies and internet-based tools is leading to new means to improve scientific methodology and communication, assessment, promotion and certification. It allows methods of acquisition, manipulation and storage, generating vast quantities of data that can further facilitate the research process. It also improves access to scientific results through information sharing and discussion. Content previously restricted only to specialists is now available to a wider audience. This context requires new management systems to make scientific knowledge more accessible and useable, including new measures to evaluate the reach of scientific information. The new science and research quality measures are strongly related to the new online technologies and services based in social media. Tools such as blogs, social bookmarks and online reference managers, Twitter and others offer alternative, transparent and more comprehensive information about the active interest, usage and reach of scientific publications. Another of these new filters is the Research Blogging platform, which was created in 2007 and now has over 1,230 active blogs, with over 26,960 entries posted about peer-reviewed research on subjects ranging from Anthropology to Zoology. This study takes a closer look at RB, in order to get insights into its contribution to the rapidly changing landscape of scientific communication.
Assuntos
Blogging , Disseminação de Informação/métodos , Internet , Ciência , Comunicação , Humanos , Pesquisa , TecnologiaRESUMO
The HIV-1 subtype C has spread efficiently in the southern states of Brazil (Rio Grande do Sul, Santa Catarina and Paraná). Phylogeographic studies indicate that the subtype C epidemic in southern Brazil was initiated by the introduction of a single founder virus population at some time point between 1960 and 1980, but little is known about the spatial dynamics of viral spread. A total of 135 Brazilian HIV-1 subtype C pol sequences collected from 1992 to 2009 at the three southern state capitals (Porto Alegre, Florianópolis and Curitiba) were analyzed. Maximum-likelihood and Bayesian methods were used to explore the degree of phylogenetic mixing of subtype C sequences from different cities and to reconstruct the geographical pattern of viral spread in this country region. Phylogeographic analyses supported the monophyletic origin of the HIV-1 subtype C clade circulating in southern Brazil and placed the root of that clade in Curitiba (Paraná state). This analysis further suggested that Florianópolis (Santa Catarina state) is an important staging post in the subtype C dissemination displaying high viral migration rates from and to the other cities, while viral flux between Curitiba and Porto Alegre (Rio Grande do Sul state) is very low. We found a positive correlation (r(2) = 0.64) between routine travel and viral migration rates among localities. Despite the intense viral movement, phylogenetic intermixing of subtype C sequences from different Brazilian cities is lower than expected by chance. Notably, a high proportion (67%) of subtype C sequences from Porto Alegre branched within a single local monophyletic sub-cluster. These results suggest that the HIV-1 subtype C epidemic in southern Brazil has been shaped by both frequent viral migration among states and in situ dissemination of local clades.
Assuntos
Infecções por HIV/epidemiologia , HIV-1/classificação , HIV-1/genética , Brasil/epidemiologia , Genes pol , Infecções por HIV/virologia , Humanos , Filogenia , FilogeografiaRESUMO
Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in São Paulo state, Brazil. We show that different viral genotypes entered São Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in São Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.
Assuntos
Hepatite C/transmissão , Apoio Social , Hepatite C/classificação , Humanos , FilogeniaRESUMO
ORF 31 is a unique baculovirus gene in the genome of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D). It encodes a putative polypeptide of 369 aa homologous to poly (ADP-ribose) polymerase (PARP) found in the genomes of several organisms. Moreover, we found a phylogenetic association with Group I PARP proteins and a 3D homology model of its conserved PARP C-terminal catalytic domain indicating that had almost an exact spatial superimposition of <1 A with other PARP available structures. The 5' end of ORF 31 mRNA was located at the first nucleotide of a CATT motif at position -27. Using real-time PCR we detected transcripts at 3 h post-infection (p.i.) increasing until 24 h p.i., which coincides with the onset of DNA replication, suggestive of a possible role in DNA metabolism.