Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 12(13): 1779-87, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26864147

RESUMO

Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

2.
Nanotechnology ; 27(12): 125302, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26890062

RESUMO

Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

3.
Front Reprod Health ; 5: 1162746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671283

RESUMO

Introduction: Menstrual cups (MC) are a reusable feminine hygiene product. A recent publication suggested that Staphylococcus aureus (S. aureus) biofilms can form on MCs which may lead to increased risk of menstrual Toxic Shock Syndrome (mTSS). Additionally, there is concern that buildup of residual menses may contribute to microbial growth and biofilm formation further increasing mTSS risk. Quantitative and qualitative analysis of in vitro tests were utilized to determine if S. aureus biofilm could form on MC in the presence of the keystone species Lactobacillus after 12 h of incubation. The methodology was based on a modification of an anaerobic in vitro method that harnesses the keystone species hypothesis by including a representative of vaginal lactic acid bacteria. Methods: MCs were incubated anaerobically for 12 h in Vaginal Defined Media (VDM) with the two morphologically distinct bacteria, Lactobacillus gasseri (L. gasseri) and S. aureus. Colony Forming Units (CFU) for each organism from the VDM broth and sonicated MC were estimated. In addition, a separate experiment was conducted where S. aureus was grown for 12 h in the absence of L. gasseri. Qualitative analysis for biofilm formation utilized micro-CT (µ-CT) and cryogenic scanning electron microscopy (Cryo-SEM). Results: Samples collected from the media control had expected growth of both organisms after 12 h of incubation. Samples collected from VDM broth were similar to media control at the end of the 12-h study. Total S. aureus cell density on MC following sonication/rinsing was minimal. Results when using a monoculture of S. aureus demonstrated that there was a significant growth of the organism in the media control and broth as well as the sonicated cups indicating that the presence of L. gasseri was important for controlling growth and adherence of S. aureus. Few rod-shaped bacteria (L. gasseri) and cocci (S. aureus) could be identified on the MCs when grown in a dual species culture inoculum and no biofilm was noted via µ-CT and cryo-SEM. Additionally, efforts to model and understand the validity of the current labeled recommendations for MC cleaning in-between uses are supported. Discussion: The data support continued safe use of the Tampax® cup when used and maintained as recommended.

4.
Nano Lett ; 11(8): 3482-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21732618

RESUMO

Plasmonics is a rapidly growing field, yet imaging of the plasmonic modes in complex nanoscale architectures is extremely challenging. Here we obtain spatial maps of the localized surface plasmon modes of high-aspect-ratio silver nanorods using electron energy loss spectroscopy (EELS) and correlate to optical data and classical electrodynamics calculations from the exact same particles. EELS mapping is thus demonstrated to be an invaluable technique for elucidating complex and overlapping plasmon modes.

5.
Nanoscale ; 9(35): 12949-12956, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28831493

RESUMO

Direct write with a liquid precursor using an ion beam in situ, allows fabrication of nanostructures with higher purity than using gas phase deposition. Specifically, positively charged helium ions, when compared to electrons, localize the reaction zone to a single-digit nanometer scale. However, to control the interaction of the ion beam with the liquid precursor, as well as enable single digit fabrication, a comprehensive understanding of the radiolytic process, and the role of secondary electrons has to be developed. Here, we demonstrate an approach for directly writing platinum nanostructures from aqueous solution using a helium ion microscope, and discuss possible mechanisms for the beam-induced particle growth in the framework of Born-Oppenheimer and real-time electron dynamics models. We illustrate the nanoparticle nucleation and growth parameters through data analysis of in situ acquired movie data, and correlate these results to a fully encompassing, time-dependent, quantum dynamical simulation that takes into account both quantum and classical interactions. Finally, sub-15 nm resolution platinum structures generated in liquid are demonstrated.

6.
Sci Rep ; 7(1): 16619, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192283

RESUMO

Multi-material systems interfaced with 2D materials, or entirely new 3D heterostructures can lead to the next generation multi-functional device architectures. Physical and chemical control at the nanoscale is also necessary tailor these materials as functional structures approach physical limit. 2D transition metal thiophosphates (TPS), with a general formulae Cu1-xIn1+x/3P2S6, have shown ferroelectric polarization behavior with a T c above the room temperature, making them attractive candidates for designing both: chemical and physical properties. Our previous studies have demonstrated that ferroic order persists on the surface, and that spinoidal decomposition of ferroelectric and paraelectric phases occurs in non-stoichiometric Cu/In ratio formulations. Here, we discuss the chemical changes induced by helium ion irradiation. We explore the TPS compound library with varying Cu/In ratio, using Helium Ion Microscopy, Atomic Force Microscopy (AFM), and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS). We correlate physical nano- and micro- structures to the helium ion dose, as well as chemical signatures of copper, oxygen and sulfur. Our ToF-SIMS results show that He ion irradiation leads to oxygen penetration into the irradiated areas, and diffuses along the Cu-rich domains to the extent of the stopping distance of the helium ions.

7.
ACS Appl Mater Interfaces ; 8(11): 7349-55, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26918591

RESUMO

Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP.

8.
ACS Nano ; 10(9): 8376-84, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27532882

RESUMO

Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. Additionally, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He(+) irradiation and monovacancy (MV) defects for all other ion irradiations.

9.
Sci Rep ; 6: 30481, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480346

RESUMO

Development of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction the of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe2 locally, and decipher associated mechanisms at the atomic level. We demonstrate He(+) beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and increases the Young's modulus of elasticity. Furthermore, we observe for the first time, an increase in the B-exciton photoluminescence signal from the nanoforged regions at the room temperature. The approach for precise defect engineering demonstrated here opens opportunities for creating functional 2D optoelectronic devices with a wide range of customizable properties that include operating in the visible region.

10.
Sci Rep ; 5: 11952, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26150202

RESUMO

The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ion lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.

11.
J Phys Chem Lett ; 4(7): 1070-8, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26282023

RESUMO

A large number of optical phenomena rely on the excitation of localized surface plasmon resonances (LSPR) in metallic nanostructures. Electron-energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has emerged as a technique capable of mapping plasmonic properties on length scales 100 times smaller than optical wavelengths. While this technique is promising, the connection between electron-driven plasmons, encountered in EELS, and photon-driven plasmons, encountered in plasmonic devices, is not well understood. This Perspective highlights some of the contributions that have been made in correlating optical scattering and STEM/EELS from the exact same nanostructures. The experimental observations are further elucidated by comparison with theoretical calculations obtained from the electron-driven discrete dipole approximation, which provides a method to calculate EEL spectra for nanoparticles of arbitrary shape. Applications of plasmon mapping to the electromagnetic hot-spots encountered in single-molecule surface-enhanced Raman scattering and electron beam induced damage in silver nanocubes are discussed. It is anticipated that the complementarity of both techniques will address issues in fundamental and applied plasmonics going forward.

12.
ACS Nano ; 6(8): 7497-504, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22849410

RESUMO

A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well-understood optical properties. By correlating the nanostructure's simulated electron energy-loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. Comparison with recent experiment is made to verify our findings.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Elétrons , Luz , Fótons , Espalhamento de Radiação
13.
J Phys Chem Lett ; 3(16): 2303-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26295787

RESUMO

Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. For the first time, we employ electron-energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. Surprisingly, the STEM/EELS plasmon maps do not show any direct signature of an electromagnetic hot spot in the gaps between the nanoparticles. The origins of this observation are explored using a fully three-dimensional electrodynamics simulation of both the electron-energy-loss probability and the near-electric field enhancements. The calculations suggest that electron beam excitation of the hot spot is possible, but only when the electron beam is located outside of the junction region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA