Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 34(2): 299-310, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26577380

RESUMO

The multilineage differentiation capacity of mouse and human embryonic stem (ES) cells offers a testing platform for small molecules that mediate mammalian lineage determination and cellular specialization. Here we report the identification of two small molecules which drives mouse 129 ES cell differentiation to skeletal muscle with high efficiency without any genetic modification. Mouse embryoid bodies (EBs) were used to screen a library of 1,000 small molecules to identify compounds capable of inducing high levels of Pax3 mRNA. Stimulation of EBs with SMIs (skeletal muscle inducer, SMI1 and SMI2) from the screen resulted in a high percentage of intensively twitching skeletal muscle fibers 3 weeks after induction. Gene expression profiling studies that were carried out for mode of actions analysis showed that SMIs activated genes regulated by the Wnt pathway and inhibited expression of Smad2/3 and Sonic Hedgehog (Shh) target genes. A combination of three small molecules known to modulate these three pathways acted similarly to the SMIs found here, driving ES cells from 129 as well as Balb/c and C57Bl/6 to skeletal muscle. Taken together, these data demonstrate that the SMI drives ES cells to skeletal muscle via concerted activation of the Wnt pathway, and inhibition of Smad2/3 signaling and Shh pathways. This provides important developmental biological information about skeletal muscle differentiation from embryonic stem cells and may lead to the development of new therapeutics for muscle disease.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Via de Sinalização Wnt , Animais , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fibras Musculares de Contração Rápida/citologia
2.
J Biomol Screen ; 14(1): 59-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19171921

RESUMO

High-content screening (HCS), a technology based on subcellular imaging by automated microscopy and sophisticated image analysis, has emerged as an important platform in small-molecule screening for early drug discovery. To validate a subcellular imaging assay for primary screening campaigns, an HCS assay was compared with a non-image-based readout in terms of variability and sensitivity. A study was performed monitoring the accumulation of the forkhead transcription factor of the O subfamily (FOXO3a) coupled with green fluorescent protein in the nucleus of human osteosarcoma (U-2 OS) cells. In addition, the transcription of a luciferase gene coupled with a FOXO3a-responsive promoter was monitored. This report demonstrates that both assay formats show good reproducibility in primary and concentration response screening despite differences in statistical assay quality. In primary screening, the correlation of compound activity between the 2 assays was low, in contrast to the good correlation of the IC(50) values of confirmed compounds. Furthermore, the high-content imaging assay showed a mean shift of 2.63-fold in IC(50) values compared with the reporter gene assay. No chemical scaffold was specifically found with 1 of the technologies only, however these results validate the HCS technology against established assays for screening of new molecular entities.


Assuntos
Núcleo Celular/metabolismo , Genes Reporter/genética , Luciferases/análise , Luciferases/genética , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Humanos , Luciferases/metabolismo , Sensibilidade e Especificidade
3.
J Biomol Screen ; 13(6): 456-67, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18509097

RESUMO

The mevalonate pathway leads to synthesis of cholesterol and isoprenoid lipids. Prenyltransferases attach the isoprenoid lipids to the C-terminus of several small guanosine triphosphate-binding proteins. The prenyl groups are essential for the biological activity of these proteins. The prenyltransferases and other components of the mevalonate pathway are either present or potential drug targets for cancer, osteoporosis, restenosis, or high serum cholesterol level. Until recently, cellular assays to study protein prenylation have been tedious, low-throughput assays. The authors have developed a high-content imaging-based assay to study protein prenylation. The assay is based on a green fluorescent protein (GFP) reporter, which is tagged with the prenylation motif of human H-Ras. The C-terminus of H-Ras targets GFP to the plasma membrane. When protein prenylation is inhibited, the tagged GFP cannot be localized to plasma membrane but is soluble in the cells. The localization of the GFP reporter can be analyzed in the 96- or 384-well format using automated microscopy and automated image analysis. Information about cell number and nuclear intensity can be obtained from the same images. In compound screening, these readouts provide valuable information about the toxicity of the compounds. The authors have validated their assay using several inhibitors of the mevalonate pathway as well as siRNA against farnesyl pyrophosphate synthase, a critical enzyme in the synthesis of the isoprenoid lipids.


Assuntos
Geraniltranstransferase/antagonistas & inibidores , Processamento de Imagem Assistida por Computador/métodos , Ácido Mevalônico/metabolismo , Prenilação de Proteína , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Dimetilaliltranstransferase/metabolismo , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imidazóis/farmacologia , Luciferases/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Ácido Mevalônico/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Reprodutibilidade dos Testes , Transfecção , Ácido Zoledrônico , Proteínas ras/metabolismo
4.
SLAS Discov ; 22(9): 1106-1119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731783

RESUMO

The intramembrane protease signal peptide peptidase-like 2a (SPPL2a) is a potential drug target for the treatment of autoimmune diseases due to an essential role in B cells and dendritic cells. To screen a library of 1.4 million compounds for inhibitors of SPPL2a, we developed an imaging assay detecting nuclear translocation of the proteolytically released cytosolic substrate fragment. The state-of-the-art hit calling approach based on nuclear translocation resulted in numerous false-positive hits, mainly interrupting intracellular protein trafficking. To filter the false positives, we extracted 340 image-based readouts and developed a novel multiparametric analysis method that successfully triaged the primary hit list. The identified scaffolds were validated by demonstrating activity on endogenous SPPL2a and substrate CD74/p8 in B cells. The multiparametric analysis discovered diverse cellular phenotypes and provided profiles for the whole library. The principle of the presented imaging assay, the screening strategy, and multiparametric analysis are potentially applicable in future screening campaigns.

5.
J Biomol Screen ; 17(6): 843-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22396475

RESUMO

High-throughput screening, based on subcellular imaging, has become a powerful tool in lead discovery. Through the generation of high-quality images, not only the specific target signal can be analyzed but also phenotypic changes of the whole cell are recorded. Yet analysis strategies for the exploration of high-content screening results, in a manner that is independent from predefined control phenotypes, are largely missing. The approach presented here is based on a well-established modeling technique, self-organizing maps (SOMs), which uses multiparametric results to group treatments that create similar morphological effects. This report describes a novel visualization of the SOM clustering by using an image of the cells from each node, with the most representative cell highlighted to deploy the phenotype described by each node. The approach has the potential to identify both expected hits and novel cellular phenotypes. Moreover, different chemotypes, which cause the same phenotypic effects, are identified, thus facilitating "scaffold hopping."


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Citometria de Varredura a Laser/métodos , Animais , Células CHO , Análise por Conglomerados , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citometria de Varredura a Laser/instrumentação , Análise Multivariada , Fenótipo , Análise de Componente Principal
6.
Antiviral Res ; 89(3): 246-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21277329

RESUMO

Human cytomegalovirus (HCMV) enters cells through a complex pathway involving the interaction of multiple viral glycoproteins and cellular receptors. While HCMV clinical isolates enter a wide range of cell types, entry has historically been studied using a laboratory strain of virus that can only infect fibroblasts. Herein, we have constructed a HCMV reporter strain that contains GFP fused to the abundant tegument protein pp65 to allow for the direct visualization of virus attachment and entry. Furthermore, the UL131 gene of this strain was restored to clinical isolate sequence to expand our studies of entry into physiologically relevant epithelial cell types. Using the HCMV-GFP reporter virus, we developed an image-based assay and screened a library containing 65,000 compounds for the inhibition of virus entry into fibroblasts. In addition to assessing the effect on virus entry, automated image analysis provided information on compound toxicity and whether the compounds acted as attachment or post-attachment inhibitors. To identify therapeutically viable inhibitors capable of blocking entry in multiple cell types, the inhibitors were screened further for their ability to inhibit virus entry into epithelial cells. Compounds were identified that were able to inhibit virus entry into both cell types at either attachment or post-attachment steps.


Assuntos
Antivirais/isolamento & purificação , Citomegalovirus/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/virologia , Fibroblastos/virologia , Virologia/métodos , Internalização do Vírus , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA