Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(6): e22248, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39166850

RESUMO

Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.


Assuntos
Toxinas Botulínicas Tipo A , Proteína 25 Associada a Sinaptossoma , Animais , Toxinas Botulínicas Tipo A/farmacologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Ratos , Células PC12 , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Humanos , Camundongos
2.
J Enzyme Inhib Med Chem ; 33(1): 1352-1361, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251900

RESUMO

In our endeavour towards the development of effective anticancer therapeutics, a novel series of isoxazole-piperazine hybrids were synthesized and evaluated for their cytotoxic activities against human liver (Huh7 and Mahlavu) and breast (MCF-7) cancer cell lines. Within series, compounds 5l-o showed the most potent cytotoxicity on all cell lines with IC50 values in the range of 0.3-3.7 µM. To explore the mechanistic aspects fundamental to the observed activity, further biological studies with 5m and 5o in liver cancer cells were carried out. We have demonstrated that 5m and 5o induce oxidative stress in PTEN adequate Huh7 and PTEN deficient Mahlavu human liver cancer cells leading to apoptosis and cell cycle arrest at different phases. Further analysis of the proteins involved in apoptosis and cell cycle revealed that 5m and 5o caused an inhibition of cell survival pathway through Akt hyperphosphorylation and apoptosis and cell cycle arrest through p53 protein activation.


Assuntos
Antineoplásicos/farmacologia , Isoxazóis/farmacologia , Piperazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Piperazina , Piperazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Cancer Res ; 84(9): 1475-1490, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319231

RESUMO

Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE: Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.


Assuntos
Ado-Trastuzumab Emtansina , Neoplasias da Mama , Morte Celular Imunogênica , Proteínas Associadas aos Microtúbulos , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Morte Celular Imunogênica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/farmacologia , Ado-Trastuzumab Emtansina/uso terapêutico , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Linfócitos T CD8-Positivos/imunologia
4.
ACS Omega ; 8(2): 2445-2454, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687110

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) is indicated as a new therapeutic modality against a variety of inflammatory diseases, including metabolic, renal, and cardiovascular disorders. In our ongoing research on sEH inhibitors, we synthesized novel benzoxazolone-5-urea analogues with highly potent sEH inhibitory properties inspired by the crystallographic fragment scaffolds incorporating a single H-bond donor/acceptor pair. The tractable SAR results indicated that the aryl or benzyl fragments flanking the benzoxazolone-urea scaffold conferred potent sEH inhibition, and compounds 31-39 inhibited the sEH activity with IC50 values in the range of 0.39-570 nM. Docking studies and molecular dynamics simulations with the most potent analogue 33 provided valuable insights into potential binding interactions of the inhibitor in the sEH binding region. In conclusion, benzoxazolone-5-ureas furnished with benzyl groups on the urea function can be regarded as novel lead structures, which allow the development of advanced analogues with enhanced properties against sEH.

5.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745348

RESUMO

Immunogenic cell death (ICD), an immune-priming form of cell death, has been shown to be induced by several different anti-cancer therapies. Despite being the first and one of the most successful antibody-drug conjugates (ADCs) approved for refractory HER2-positive breast cancer, little is known if response and resistance to trastuzumab emtansine (T-DM1) involves ICD modulation that can be leveraged to enhance T-DM1 response. Here, we report that T-DM1 induces spindle assembly checkpoint (SAC)-dependent ICD in sensitive cells by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which are lost in resistance. Accordingly, an ICD-related gene signature correlates with clinical response to T-DM1-containing therapy. We found that transforming acidic coiled-coil containing 3 (TACC3) is overexpressed in T-DM1 resistant cells, and that T-DM1 responsive patients have reduced TACC3 protein while the non-responders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacological inhibition of TACC3 revives T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition elicits ICD in vivo shown by vaccination assay, and it potentiates T-DM1 by inducing dendritic cell (DC) maturation and enhancing infiltration of cytotoxic T cells in the human HER2-overexpressing MMTV.f.huHER2#5 (Fo5) transgenic model. Together, our results show that ICD is a key mechanism of action of T-DM1 which is lost in resistance, and that targeting TACC3 restores T-DM1-mediated ICD and overcomes resistance.

6.
Expert Opin Drug Discov ; 17(11): 1209-1236, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164263

RESUMO

INTRODUCTION: The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED: This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION: Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].


Assuntos
Farmacóforo , Triazóis , Humanos , Triazóis/farmacologia , Triazóis/química , Química Click , Descoberta de Drogas , Química Farmacêutica
7.
ACS Omega ; 7(41): 36206-36226, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278052

RESUMO

The vicinal diaryl heterocyclic framework has been widely used for the development of compounds with significant bioactivities. In this study, a series of diaryl heterocycles were designed and synthesized based on an in-house diaryl isoxazole derivative (9), and most of the newly synthesized derivatives demonstrated moderate to good antiproliferative activities against a panel of hepatocellular carcinoma and breast cancer cells, exemplified with the diaryl isoxazole 11 and the diaryl pyrazole 85 with IC50 values in the range of 0.7-9.5 µM. Treatments with both 11 and 85 induced apoptosis in these tumor cells, and they displayed antitumor activity in vivo in the Mahlavu hepatocellular carcinoma and the MDA-MB-231 breast cancer xenograft models, indicating that these compounds could be considered as leads for further development of antitumor agents. Important structural features of this compound class for the antitumor activity have also been proposed, which warrant further exploration to guide the design of new and more potent diaryl heterocycles.

8.
Eur J Med Chem ; 221: 113489, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951549

RESUMO

In our effort for the development of novel anticancer therapeutics, a series of isoxazole-piperazine analogues were prepared, and primarily screened for their antiproliferative potential against hepatocellular carcinoma (HCC; Huh7/Mahlavu) and breast (MCF-7) cancer cells. All compounds demonstrated potent to moderate cytotoxicity on all cell lines with IC50 values in the range of 0.09-11.7 µM. Further biological studies with 6a and 13d in HCC cells have shown that both compounds induced G1 or G2/M arrests resulting in apoptotic cell death. Subsequent analysis of proteins involved in cell cycle progression as well as proliferation of HCC cells revealed that 6a and 13d may affect cellular survival pathways differently depending on the mutation profiles of cells (p53 and PTEN), epidermal/mesenchymal characteristics, and activation of cell mechanisms through p53 dependent/independent pathways. Lastly, we have demonstrated the potential anti-stemness properties of these compounds in which the proportion of liver CSCs in Huh7 cells (CD133+/EpCAM+) were significantly reduced by 6a and 13d. Furthermore, both compounds caused a significant reduction in expression of stemness markers, NANOG or OCT4 proteins, in Mahlavu and Huh7 cells, as well as resulted in a decreased sphere formation capacity in Huh7 cells. Together, these novel isoxazole-piperazine derivatives may possess potential as leads for development of effective anti-cancer drugs against HCC cells with stem cell-like properties.


Assuntos
Antineoplásicos/farmacologia , Isoxazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Piperazina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/química , Neoplasias Hepáticas/patologia , Estrutura Molecular , Piperazina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA