Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Res ; 204(Pt A): 111966, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34450156

RESUMO

Microalgae are drawing attentions among researchers for their biorefinery use or value-added products. The high production rate of biomasses produced are attractive for conversion into volatile biochar. Torrefaction, pyrolysis and hydrothermal carbonization are the recommended thermochemical conversion techniques that could produce microalgal-based biochar with desirable physiochemical properties such as high surface area and pore volume, abundant surface functional groups, as well as functionality such as high adsorption capacity. The characterizations of the biochar significantly influence the mechanisms in adsorption of pollutants from wastewaters. Specific adsorption of the organic and inorganic pollutants from the effluent are reviewed to examine the adsorption capacity and efficiency of biochar derived from different microalgae species. Last but not least, future remarks over the challenges and improvements are discussed accordingly. Overall, this review would discuss the synthesis, characterization and application of the microalgal-based biochar in wastewater.


Assuntos
Microalgas , Águas Residuárias , Adsorção , Carvão Vegetal
2.
Bioprocess Biosyst Eng ; 43(11): 2027-2038, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32572569

RESUMO

Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Clostridium beijerinckii/metabolismo , Ácidos Graxos Voláteis/biossíntese , Microbiologia Industrial/métodos , Nitrogênio/química , Anaerobiose , Biomassa , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Amido/metabolismo , Especificidade por Substrato
3.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486212

RESUMO

Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM ß-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of ß-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. ß-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant ß-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular ß-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly ß-CGTase by the recombinant E. coli.


Assuntos
Bacillus/enzimologia , Códon/química , Escherichia coli/metabolismo , Glucosiltransferases/biossíntese , Glicina/química , Cromatografia de Afinidade , Uso do Códon , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Cinética , Níquel/química , Proteínas Recombinantes/biossíntese , Temperatura
4.
Molecules ; 24(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323813

RESUMO

Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.


Assuntos
Bacillus/metabolismo , Biodegradação Ambiental , Gorduras Insaturadas na Dieta/metabolismo , Metais Pesados/química , Tensoativos/química , Tensoativos/metabolismo , Adsorção , Bacillus/classificação , Bacillus/genética , Proteínas de Bactérias/genética , Filogenia , Tensoativos/isolamento & purificação
5.
Molecules ; 24(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261835

RESUMO

Microbial fuel cells offer a technology for simultaneous biomass degradation and biological electricity generation. Microbial fuel cells have the ability to utilize a wide range of biomass including carbohydrates, such as starch. Sago hampas is a starchy biomass that has 58% starch content. With this significant amount of starch content in the sago hampas, it has a high potential to be utilized as a carbon source for the bioelectricity generation using microbial fuel cells by Clostridium beijerinckii SR1. The maximum power density obtained from 20 g/L of sago hampas was 73.8 mW/cm2 with stable cell voltage output of 211.7 mV. The total substrate consumed was 95.1% with the respect of 10.7% coulombic efficiency. The results obtained were almost comparable to the sago hampas hydrolysate with the maximum power density 56.5 mW/cm2. These results demonstrate the feasibility of solid biomass to be utilized for the power generation in fuel cells as well as high substrate degradation efficiency. Thus, this approach provides a promising way to exploit sago hampas for bioenergy generation.


Assuntos
Arecaceae/química , Fontes de Energia Bioelétrica/microbiologia , Clostridium beijerinckii/crescimento & desenvolvimento , Amido/química , Biomassa , Estudos de Viabilidade , Hidrólise
6.
Molecules ; 23(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081514

RESUMO

This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.


Assuntos
Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Fermentação , Frutas/metabolismo , Açúcares/metabolismo , Bioengenharia , Celulase/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Óleo de Palmeira
7.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614823

RESUMO

The combination of superheated steam (SHS) with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.


Assuntos
Arecaceae/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Biomassa , Óleo de Palmeira/metabolismo
8.
Molecules ; 23(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880760

RESUMO

Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.


Assuntos
Arecaceae/metabolismo , Biomassa , Metabolismo dos Carboidratos , Fermentação , Arecaceae/química
9.
Appl Microbiol Biotechnol ; 100(12): 5231-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27115758

RESUMO

Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process.


Assuntos
Biomassa , Lignina/metabolismo , Ração Animal , Animais , Biocombustíveis , Celulose/metabolismo , Fungos/metabolismo , Hidrólise , Lacase/metabolismo , Peroxidases/metabolismo , Tensoativos
10.
Environ Sci Pollut Res Int ; 31(23): 33303-33324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710845

RESUMO

Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.


Assuntos
Agricultura , Aminoácidos , Biomassa , Aminoácidos/metabolismo , Indonésia , Malásia , Bacillus subtilis/metabolismo
11.
Bioengineered ; 14(1): 2262203, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791464

RESUMO

The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly (p < 0.05) while 2,4-dichlorophenoxy acetic acid (2,4-D) was deemed insignificant. To maximize the final yield of KCB and EPS, the final optimized variables are 50 g/L sucrose, 147.02 rpm, and 2 mg/L of NAA. To conclude, the optimized parameters for the cell suspension culture of kenaf callus serve as the blueprint for any sustainable large-scale production in the future and provide an alternative cultivating method to kenaf traditional farming.


The optimized cell cultivation for plant kenaf callus is 22 daysSucrose, agitation and NAA concentration stimulates the production of KCB and EPSHighest KCB and EPS was generated at 13.41 g/L and 1.86 g/L, respectivelyMaximum production blueprint for KCB and EPS require 50 g/L sucrose, 2 mg/L of NAA and 147.02 rpm.


Assuntos
Hibiscus , Biomassa , Técnicas de Cultura de Células , Sacarose , Acetatos
12.
Bioengineered ; 13(7-12): 14903-14935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37105672

RESUMO

Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.


Subject-based thematic review of fungal biomass usage and developmentPractical application of fungal biomass aligns with 3 Sustainable Development GoalsHigh performance is reported in medical, water management, buildings, and biofuel fieldsFungal biomass is the lucrative, essential, and future's way forward.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Humanos , Reatores Biológicos , Carboidratos , Biomassa , Fungos/metabolismo
13.
Sci Rep ; 10(1): 6613, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313095

RESUMO

Phytoremediation is one of the environmental-friendly and cost-effective systems for the treatment of wastewater, including industrial wastewater such as palm oil mill effluent final discharge (POME FD). However, the effects of the wastewater on the phytoremediator plants, in term of growth performance, lignocellulosic composition, and the presence of nutrients and heavy metals in the plants are not yet well studied. In the present work, we demonstrated that POME FD increased the growth of P. purpureum. The height increment of P. purpureum supplied with POME FD (treatment) was 61.72% as compared to those supplied with rain water (control) which was 14.42%. For lignocellulosic composition, the cellulose percentages were 38.77 ± 0.29% (treatment) and 34.16 ± 1.01% (control), and the difference was significant. These results indicated that POME FD could be a source of plant nutrients, which P. purpureum can absorb for growth. It was also found that the heavy metals (Al, As, Cd, Co, Cr, Ni and Pb) inside the plant were below the standard limit of the World Health Organization (WHO). Since POME FD was shown to have no adverse effects on P. purpureum, further research regarding the potential application of P. purpureum following phytoremediation of POME FD such as biofuel production is warranted to evaluate its potential use to fit into the waste-to-wealth agenda.

14.
3 Biotech ; 9(6): 234, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31139549

RESUMO

Pineapple peel is a potential feedstock for the extraction of essential oil due to the presence of aromatic compounds. To extract the essential oil from pineapple peels, three different methods were applied, i.e., (1) hydro-distillation (HD); (2) hydro-distillation with enzyme-assisted (HDEA); and (3) supercritical fluid extraction (SFE). SFE had successfully produced an essential oil with the yield of 0.17% (w/w) together with 0.64% (w/w) of concrete, whereby the HD and HDEA had only produced hydrosols with the yield of 70.65% (w/w) and 80.65% (w/w), respectively. Parameters' optimization for HD (substrate to solvent ratio, temperature, and extraction duration) and HDEA (cellulase loading and incubation duration) significantly affected the hydrosol yield, but did not extract out the essential oil. This is because only SFE had successfully ruptured the oil gland after observed under the scanning electron microscope. The essential oil obtained from SFE composed of mainly propanoic acid ethyl ester (40.25%), lactic acid ethyl ester (19.35%), 2-heptanol (15.02%), propanol (8.18%), 3-hexanone (2.60%), and butanoic acid ethyl ester (1.58%). In overall, it can be concluded that the SFE had successfully extracted the essential oil as compared to the HD and HDEA methods.

15.
Sci Rep ; 9(1): 7443, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092836

RESUMO

Simultaneous saccharification and fermentation (SSF) with delayed yeast extract feeding (DYEF) was conducted in a 2-L bioreactor equipped with in-situ recovery using a gas stripping in order to enhance biobutanol production from lignocellulosic biomass of oil palm empty fruit bunch (OPEFB). This study showed that 2.88 g/L of biobutanol has been produced from SSF with a similar yield of 0.23 g/g as compared to separate hydrolysis and fermentation (SHF). An increase of 42% of biobutanol concentration was observed when DYEF was introduced in the SSF at 39 h of fermentation operation. Biobutanol production was further enhanced up to 11% with a total improvement of 72% when in-situ recovery using a gas stripping was implemented to reduce the solvents inhibition in the bioreactor. In overall, DYEF and in-situ recovery were able to enhance biobutanol production in SSF.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Óleo de Palmeira/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Fermentação/fisiologia , Hidrólise
16.
Appl Biochem Biotechnol ; 166(7): 1615-25, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22391689

RESUMO

Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium butyricum/fisiologia , Cycas/química , Etanol/metabolismo , Reatores Biológicos , Celulase/metabolismo , Fermentação , Frutas/química , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nitrogênio/metabolismo , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA