Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Chem Soc ; 139(39): 13692-13700, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28885015

RESUMO

Intrinsically disordered proteins (IDPs) have roles in myriad biological processes and numerous human diseases. However, kinetic and amplitude information regarding their ground-state conformational fluctuations has remained elusive. We demonstrate using nuclear magnetic resonance (NMR)-based relaxation dispersion that the D2 domain of p27Kip1, a prototypical IDP, samples multiple discrete, rapidly exchanging conformational states. By combining NMR with mutagenesis and small-angle X-ray scattering (SAXS), we show that these states involve aromatic residue clustering through long-range hydrophobic interactions. Theoretical studies have proposed that small molecules bind promiscuously to IDPs, causing expansion of their conformational landscapes. However, on the basis of previous NMR-based screening results, we show here that compound binding only shifts the populations of states that existed within the ground state of apo p27-D2 without changing the barriers between states. Our results provide atomic resolution insight into how a small molecule binds an IDP and emphasize the need to examine motions on the low microsecond time scale when probing these types of interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Bibliotecas de Moléculas Pequenas/química , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular
2.
Angew Chem Int Ed Engl ; 56(25): 7070-7073, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28508552

RESUMO

The kinase inhibitory domain of the cell cycle regulatory protein p27Kip1 (p27) was nuclear spin hyperpolarized using dissolution dynamic nuclear polarization (D-DNP). While intrinsically disordered in isolation, p27 adopts secondary structural motifs, including an α-helical structure, upon binding to cyclin-dependent kinase 2 (Cdk2)/cyclin A. The sensitivity gains obtained with hyperpolarization enable the real-time observation of 13 C NMR signals during p27 folding upon binding to Cdk2/cyclin A on a time scale of several seconds. Time-dependent intensity changes are dependent on the extent of folding and binding, as manifested in differential spin relaxation. The analysis of signal decay rates suggests the existence of a partially folded p27 intermediate during the timescale of the D-DNP NMR experiment.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética/métodos , Dobramento de Proteína , Ciclina A/química , Quinase 2 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p27/química , Ligação Proteica , Estrutura Secundária de Proteína , Solubilidade , Fatores de Tempo
3.
J Mol Biol ; 433(18): 167120, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197833

RESUMO

Proteins that exhibit intrinsically disordered regions (IDRs) are prevalent in the human proteome and perform diverse biological functions, including signaling and regulation. Due to these important roles, misregulation of intrinsically disordered proteins (IDPs) is associated with myriad human diseases, including neurodegeneration and cancer. The inherent flexibility of IDPs limits the applicability of the traditional structure-based drug design paradigm; therefore, IDPs have long been considered "undruggable". Using NMR spectroscopy and other methods, we previously discovered small, drug-like molecules that bind specifically, albeit weakly, to dynamic clusters of aromatic residues within p27Kip1 (p27), an archetypal disordered protein involved in cell cycle regulation. Here, using synthetic chemistry, NMR spectroscopy and other biophysical methods, we discovered elaborated analogs of our previously reported molecules with 30-fold increased affinity for p27 (apparent Kd = 57 ± 19 µM). Strikingly, using analytical ultracentrifugation methods, we showed that the highest affinity compounds caused p27 to form soluble, disordered oligomers. Based on these observations, we propose that sequestration within soluble oligomers may represent a general strategy for therapeutically targeting disease-associated IDPs in the future.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Proteínas Intrinsicamente Desordenadas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
4.
Sci Rep ; 5: 15686, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26507530

RESUMO

Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27(Kip1) (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Relação Estrutura-Atividade
5.
PLoS One ; 9(3): e91173, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24646893

RESUMO

p27Kip1 is a cell cycle inhibitor that prevents cyclin dependent kinase (CDK)/cyclin complexes from phosphorylating their targets. p27Kip1 is a known tumor suppressor, as the germline loss of p27Kip1 results in sporadic pituitary formation in aged rodents, and its presence in human cancers is indicative of a poor prognosis. In addition to its role in cancer, loss of p27Kip1 results in regenerative phenotypes in some tissues and maintenance of stem cell pluripotency, suggesting that p27Kip1 inhibitors could be beneficial for tissue regeneration. Because p27Kip1 is an intrinsically disordered protein, identifying direct inhibitors of the p27Kip1 protein is difficult. Therefore, we pursued a high-throughput screening strategy to identify novel p27Kip1 transcriptional inhibitors. We utilized a luciferase reporter plasmid driven by the p27Kip1 promoter to transiently transfect HeLa cells and used cyclohexamide as a positive control for non-specific inhibition. We screened a "bioactive" library consisting of 8,904 (4,359 unique) compounds, of which 830 are Food and Drug Administration (FDA) approved. From this screen, we successfully identified 111 primary hits with inhibitory effect against the promoter of p27Kip1. These hits were further refined using a battery of secondary screens. Here we report four novel p27Kip1 transcriptional inhibitors, and further demonstrate that our most potent hit compound (IC50 = 200 nM) Alsterpaullone 2-cyanoethyl, inhibits p27Kip1 transcription by preventing FoxO3a from binding to the p27Kip1 promoter. This screen represents one of the first attempts to identify inhibitors of p27Kip1 and may prove useful for future tissue regeneration studies.


Assuntos
Benzazepinas/farmacologia , Inibidor de Quinase Dependente de Ciclina p27/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Indóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/antagonistas & inibidores , Benzazepinas/química , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Genes Reporter , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Indóis/química , Luciferases/antagonistas & inibidores , Luciferases/genética , Luciferases/metabolismo , Regiões Promotoras Genéticas , Bibliotecas de Moléculas Pequenas/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Dalton Trans ; (35): 6903-14, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449128

RESUMO

Interest in stable nucleophilic carbenes has grown rapidly since the isolation of the first "bottle-able" example in 1991. Not only has the structural variation of this class of compounds seen an incredible expansion from laboratories around the world, but the chemical reactivity of these compounds has opened many new opportunities for improvements in chemical transformations and invention of new processes. This article reflects our particular interest in fused polycyclic carbenes and focuses on this broad chemical class from both a structural and reactivity perspective.


Assuntos
Metano/análogos & derivados , Compostos Policíclicos/química , Compostos Policíclicos/síntese química , Metano/síntese química , Metano/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA