Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(Web Server issue): W297-302, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671332

RESUMO

Protein-ligand interactions taking place far away from the active site, during ligand binding or release, may determine molecular specificity and activity. However, obtaining information about these interactions with experimental or computational methods remains difficult. The computational tool presented in this article, MoMA-LigPath, is based on a mechanistic representation of the molecular system, considering partial flexibility, and on the application of a robotics-inspired algorithm to explore the conformational space. Such a purely geometric approach, together with the efficiency of the exploration algorithm, enables the simulation of ligand unbinding within short computing time. Ligand unbinding pathways generated by MoMA-LigPath are a first approximation that can provide useful information about protein-ligand interactions. When needed, this approximation can be subsequently refined and analyzed using state-of-the-art energy models and molecular modeling methods. MoMA-LigPath is available at http://moma.laas.fr. The web server is free and open to all users, with no login requirement.


Assuntos
Proteínas/química , Software , Algoritmos , Sítios de Ligação , Simulação por Computador , Insulina/química , Insulina/metabolismo , Internet , Ligantes , Modelos Moleculares , Fenóis/química , Fenóis/metabolismo , Conformação Proteica , Proteínas/metabolismo
2.
Phys Chem Chem Phys ; 12(29): 8268-76, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20526495

RESUMO

Simulating protein conformational changes induced or required by the internal diffusion of a ligand is important for the understanding of their interaction mechanisms. Such simulations are challenging for currently available computational methods. In this paper, the problem is formulated as a mechanical disassembly problem where the protein and the ligand are modeled like articulated mechanisms, and an efficient method for computing molecular disassembly paths is described. The method extends recent techniques developed in the framework of robot motion planning. Results illustrating the capacities of the approach are presented on two biologically interesting systems involving ligand-induced conformational changes: lactose permease (LacY), and the beta(2)-adrenergic receptor.


Assuntos
Ligantes , Proteínas de Membrana Transportadoras/química , Receptores Adrenérgicos beta 2/química , Algoritmos , Sítios de Ligação , Simulação por Computador , Difusão , Ligação de Hidrogênio , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA