Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1869(1): 64-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29175553

RESUMO

Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.


Assuntos
Vesículas Extracelulares/fisiologia , Metástase Neoplásica/patologia , Animais , Comunicação Celular/fisiologia , Transformação Celular Neoplásica/patologia , Progressão da Doença , Humanos , Neoplasias/patologia , Microambiente Tumoral/fisiologia
2.
J Enzyme Inhib Med Chem ; 32(1): 648-657, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28262028

RESUMO

Specifically targeted drug delivery systems with low immunogenicity and toxicity are deemed to increase efficacy of cancer chemotherapy. Acridine Orange (AO) is an acidophilic dye with a strong tumoricidal action following excitation with a light source at 466 nm. However, to date the clinical use of AO is limited by the potential side effects elicited by systemic administration. The endogenous nanocarrier exosomes have been recently introduced as a natural delivery system for therapeutic molecules. In this article, we show the outcome of the administration to human melanoma cells of AO charged Exosomes (Exo-AO), in both monolayer and spheroid models. The results showed an extended drug delivery time of Exo-AO to melanoma cells as compared to the free AO, improving the cytotoxicity of AO. This study shows that Exo-AO have a great potential for a real exploitation as a new theranostic approach against tumors based on AO delivered through the exosomes.


Assuntos
Laranja de Acridina/química , Sistemas de Liberação de Medicamentos , Exossomos , Melanoma/tratamento farmacológico , Nanomedicina Teranóstica , Laranja de Acridina/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal
3.
J Enzyme Inhib Med Chem ; 32(1): 908-916, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28708430

RESUMO

Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.


Assuntos
Produtos Biológicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Humanos
4.
J Enzyme Inhib Med Chem ; 31(sup1): 119-125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27142956

RESUMO

CONTEXT: Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. OBJECTIVE: To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. METHODS: The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. RESULTS: The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. DISCUSSION: These results represent the first successful attempt in combining two different proton exchanger inhibitors. CONCLUSION: This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Lansoprazol/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Lansoprazol/síntese química , Lansoprazol/química , Estrutura Molecular , Relação Estrutura-Atividade
5.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092755

RESUMO

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético
6.
Hum Vaccin Immunother ; 19(3): 2273697, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961893

RESUMO

Healthcare workers (HCWs) are the target population for vaccination against coronavirus disease (COVID-19) as they are at a high risk of exposure and transmission of pathogens to patients. Neutralizing antibodies developed after COVID-19 vaccination decline within few months of vaccination. Several factors, including age and sex, can affect the intensity, efficacy, and duration of immune response to vaccines. However, sex-specific analyses of humoral responses to COVID-19 vaccines are lacking. This study aimed to evaluate sex-based differences in anti-S/RBD (Receptor Binding Domain) responses at three different time points after the second dose of mRNA COVID-19 vaccine in HCWs in relation to age, and to investigate the role of sex hormones as potential markers of response. Anti-S/RBD levels after two doses of the mRNA vaccine were collected from 521 HCWs naïve to COVID-19, working at two Italian Clinical Centers. Multiple regression analysis was applied to evaluate the association between anti-S levels and sex, age, and plasma levels of sex hormones. Significantly higher anti-S/RBD response to the COVID-19 vaccination was found in female HCWs, and a significant and more abrupt decline in response with time was observed in women than that in men. A novel, positive association of testosterone plasma levels and higher anti-S levels in male HCWs was found, suggesting its potential role as sex specific marker in males. In conclusion, understanding the sex-based differences in humoral immune responses to vaccines may potentially improve vaccination strategies and optimize surveillance programs for HCWs.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Feminino , Masculino , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação , Hormônios Esteroides Gonadais , Anticorpos Neutralizantes , Pessoal de Saúde , Anticorpos Antivirais
7.
Haematologica ; 97(1): 38-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21933852

RESUMO

BACKGROUND: Non-Hodgkin's B-cell lymphomas account for approximately 70% of B-cell lymphomas. While its incidence is dramatically increasing worldwide, the disease is still associated with high morbidity due to ineffectiveness of conventional therapies, creating an urgent need for novel therapeutic approaches. Unconventional compounds, including polyphenols and the cytokine TRAIL, are being extensively studied for their capacity to restore apoptosis in a large number of tumors, including lymphomas. DESIGN AND METHODS: Molecular mechanisms of TRAIL-resistance and reactivation of the apoptotic machinery by quercetin in non-Hodgkin's lymphoma cell lines were determined by Hoescht, flow cytometry, Western blot, qPCR, by use of siRNA or pharmacological inhibitors of the mitochondrial pathway and by immunoprecipitation followed by post-translational modification analysis. RESULTS: Results demonstrate that quercetin, a natural flavonoid, restores TRAIL-induced cell death in resistant transformed follicular lymphoma B-cell lines, despite high Bcl-2 expression levels due to the chromosomal translocation t(14;18). Quercetin rescues mitochondrial activation by inducing the proteasomal degradation of Mcl-1 and by inhibiting survivin expression at the mRNA level, irrespective of p53. Restoration of the TRAIL pathway requires Bax and Bak but is independent of enhanced TRAIL DISC formation. CONCLUSIONS: We demonstrate that inactivation of survivin and Mcl-1 expression by quercetin is sufficient to restore TRAIL sensitivity in resistant non-Hodgkin's lymphoma B cells. Our results suggest, therefore, that combining quercetin with TRAIL treatments may be useful in the treatment of non-Hodgkin's lymphoma.


Assuntos
Antioxidantes/farmacologia , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quercetina/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 10/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Linfoma de Células B/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Survivina , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
EMBO Rep ; 10(12): 1348-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893578

RESUMO

Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co-localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti-tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.


Assuntos
Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Homologia de Sequência , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Dictyostelium/genética , Endossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica , Fagocitose/genética , Fagocitose/fisiologia , Isoformas de Proteínas/genética , Distribuição Tecidual , Células Tumorais Cultivadas
9.
Front Cell Dev Biol ; 9: 622908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816471

RESUMO

Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.

10.
Biomedicines ; 9(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34944758

RESUMO

In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.

11.
J Biol Chem ; 284(49): 34211-22, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801663

RESUMO

Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.


Assuntos
Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/química , Melanoma/patologia , Microscopia Confocal/métodos , Modelos Biológicos , Metástase Neoplásica , Prótons , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Espectrometria de Fluorescência/métodos
12.
Int J Cancer ; 127(1): 207-19, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19876915

RESUMO

Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.


Assuntos
Esomeprazol/uso terapêutico , Melanoma/tratamento farmacológico , Inibidores da Bomba de Prótons/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Esomeprazol/farmacologia , Feminino , Citometria de Fluxo , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos SCID , Inibidores da Bomba de Prótons/farmacologia
13.
Int Rev Cell Mol Biol ; 351: 149-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32247579

RESUMO

Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.


Assuntos
Morte Celular , Esfingolipídeos/metabolismo , Animais , Sobrevivência Celular , Humanos , Microdomínios da Membrana/metabolismo , Mitocôndrias/metabolismo
14.
Front Microbiol ; 11: 1821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849425

RESUMO

Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can infect animal and human hosts. The infection induces mild or sometimes severe acute respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents a global problem for human health. Unfortunately, only limited approaches are available to treat coronavirus infections and a vaccine against this new coronavirus variant is not yet available. The plasma membrane microdomain lipid rafts have been found by researchers to be involved in the replication cycle of numerous viruses, including coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact between virus and host cells occurs into these specialized regions, representing a port of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role played by autophagy in the host immune responses to viral infections. Coronaviruses, like other viruses, were reported to be able to exploit the autophagic machinery to increase their replication or to inhibit the degradation of viral products. Agents known to disrupt lipid rafts, such as metil-ß-cyclodextrins or statins, as well as autophagy inhibitor agents, were shown to have an anti-viral role. In this review, we briefly describe the involvement of lipid rafts and autophagy in coronavirus infection and replication. We also hint how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.

15.
Front Immunol ; 11: 262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231660

RESUMO

Natural killer (NK) cells contribute to immunosurveillance and first-line defense in the control of tumor growth and metastasis diffusion. NK-cell-derived extracellular vesicles (NKEVs) are constitutively secreted and biologically active. They reflect the protein and genetic repertoire of originating cells, and exert antitumor activity in vitro and in vivo. Cancer can compromise NK cell functions, a status potentially reflected by their extracellular vesicles. Hence, NKEVs could, on the one hand, contribute to improve cancer therapy by interacting with tumor and/or immune cells and on the other hand, sense the actual NK cell status in cancer patients. Here, we investigated the composition of healthy donors' NKEVs, including NK microvesicles and exosomes, and their interaction with uncompromised cells of the immune system. To sense the systemic NK cell status in cancer patients, we developed an immune enzymatic test (NKExoELISA) that measures plasma NK-cell-derived exosomes, captured as tsg101+CD56+ nanovesicles. NKEV mass spectrometry and cytokine analysis showed the expression of NK cell markers, i.e., NKG2D and CD94, perforin, granzymes, CD40L, and other molecules involved in cytotoxicity, homing, cell adhesion, and immune activation, together with EV markers tsg101, CD81, CD63, and CD9 in both NK-derived exosomes and microvesicles. Data are available via Proteome Xchange with identifier PXD014894. Immunomodulation studies revealed that NKEVs displayed main stimulatory functions in peripheral blood mononuclear cells (PBMCs), inducing the expression of human leukocyte antigen DR isotype (HLA-DR) and costimulatory molecules on monocytes and CD25 expression on T cells, which was maintained in the presence of lipopolysaccharide (LPS) and interleukin (IL)-10/transforming growth factor beta (TGFß), respectively. Furthermore, NKEVs increased the CD56+ NK cell fraction, suggesting that effects mediated by NKEVs might be potentially exploited in support of cancer therapy. The measurement of circulating NK exosomes in the plasma of melanoma patients and healthy donors evidenced lower levels of tsg101+CD56+ exosomes in patients with respect to donors. Likewise, we detected lower frequencies of NK cells in PBMCs of these patients. These data highlight the potential of NKExoELISA to sense alterations of the NK cell immune status.


Assuntos
Vesículas Extracelulares/patologia , Imunoensaio/métodos , Células Matadoras Naturais/patologia , Leucócitos Mononucleares/imunologia , Melanoma/imunologia , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Vigilância Imunológica , Imunomodulação , Melanoma/diagnóstico , Monitorização Imunológica , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Mapas de Interação de Proteínas , Proteômica , Fatores de Transcrição/metabolismo
16.
Int J Cancer ; 124(12): 2804-12, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19235924

RESUMO

The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Vacúolos/patologia , Animais , Western Blotting , Reagentes de Ligações Cruzadas , Feminino , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Receptores de Hialuronatos/metabolismo , Imunoprecipitação , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Metástase Linfática , Proteínas de Membrana Lisossomal/metabolismo , Melanoma/secundário , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Neurofibromina 2/metabolismo , Fagocitose , Neoplasias Cutâneas/patologia , Transfecção , Células Tumorais Cultivadas , Vacúolos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Res ; 67(11): 5408-17, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17545622

RESUMO

Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Inibidores Enzimáticos/farmacologia , Linfoma de Células B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Inibidores da Bomba de Prótons , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Inibidores de Caspase , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citosol/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Linfoma de Células B/enzimologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Omeprazol/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Vimblastina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331091

RESUMO

Tamoxifen resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. The mechanisms of tamoxifen resistance are not fully understood although several underlying molecular events have been suggested. Recently, we identified autoantibodies reacting with membrane-associated ERα (anti-ERα Abs) in sera of breast cancer patients, able to promote tumor growth. Here, we investigated whether anti-ERα Abs purified from sera of ER-positive breast cancer patients could contribute to tamoxifen resistance. Anti-ERα Abs inhibited tamoxifen-mediated effects on cell cycle and proliferation in MCF-7 cells. Moreover, anti-ERα Abs hampered the tamoxifen-mediated reduction of tumor growth in SCID mice xenografted with breast tumor. Notably, simvastatin-mediated disaggregation of lipid rafts, where membrane-associated ERα is embedded, restored tamoxifen sensitivity, preventing anti-ERα Abs effects. In conclusion, detection of serum anti-ERα Abs may help predict tamoxifen resistance and concur to appropriately inform therapeutic decisions concerning hormone therapy in ER-positive breast cancer patients.


Assuntos
Antineoplásicos Hormonais/imunologia , Autoanticorpos/sangue , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/imunologia , Receptor alfa de Estrogênio/imunologia , Tamoxifeno/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Hormonais/uso terapêutico , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Res ; 66(7): 3629-38, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16585188

RESUMO

The phenomenon of cell cannibalism, which generally refers to the engulfment of cells within other cells, was described in malignant tumors, but its biological significance is still largely unknown. In the present study, we investigated the occurrence, the in vivo relevance, and the underlying mechanisms of cannibalism in human melanoma. As first evidence, we observed that tumor cannibalism was clearly detectable in vivo in metastatic lesions of melanoma and often involved T cells, which could be found in a degraded state within tumor cells. Then, in vitro experiments confirmed that cannibalism of T cells was a property of metastatic melanoma cells but not of primary melanoma cells. In particular, morphologic analyses, including time-lapse cinematography and electron microscopy, revealed a sequence of events, in which metastatic melanoma cells were able to engulf and digest live autologous melanoma-specific CD8(+) T cells. Importantly, this cannibalistic activity significantly increased metastatic melanoma cell survival, particularly under starvation condition, supporting the evidence that tumor cells may use the eating of live lymphocytes as a way to "feed" in condition of low nutrient supply. The mechanism underlying cannibalism involved a complex framework, including lysosomal protease cathepsin B activity, caveolae formation, and ezrin cytoskeleton integrity and function. In conclusion, our study shows that human metastatic melanoma cells may eat live T cells, which are instead programmed to kill them, suggesting a novel mechanism of tumor immune escape. Moreover, our data suggest that cannibalism may represent a sort of "feeding" activity aimed at sustaining survival and progression of malignant tumor cells in an unfavorable microenvironment.


Assuntos
Linfócitos/patologia , Melanoma/patologia , Melanoma/secundário , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Linfócitos/imunologia , Melanoma/imunologia , Melanoma/metabolismo , Fagocitose , Linfócitos T/imunologia , Linfócitos T/patologia
20.
Metabolites ; 8(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295495

RESUMO

Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA