Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010987, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792890

RESUMO

Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34402513

RESUMO

The F-BAR protein Imp2 is an important contributor to cytokinesis in the fission yeast Schizosaccharomyces pombe. Because cell cycle-regulated phosphorylation of the central intrinsically disordered region (IDR) of the Imp2 paralog Cdc15 controls Cdc15 oligomerization state, localization and ability to bind protein partners, we investigated whether Imp2 is similarly phosphoregulated. We found that Imp2 is endogenously phosphorylated on 28 sites within its IDR, with the bulk of phosphorylation being constitutive. In vitro, the casein kinase 1 (CK1) isoforms Hhp1 and Hhp2 can phosphorylate 17 sites, and Cdk1 (also known as Cdc2) can phosphorylate the remaining 11 sites. Mutations that prevent Cdk1 phosphorylation result in precocious Imp2 recruitment to the cell division site, and mutations designed to mimic these phosphorylation events delay Imp2 accumulation at the contractile ring (CR). Mutations that eliminate CK1 phosphorylation sites allow CR sliding, and phosphomimetic substitutions at these sites reduce Imp2 protein levels and slow CR constriction. Thus, like Cdc15, the Imp2 IDR is phosphorylated at many sites by multiple kinases. In contrast to Cdc15, for which phosphorylation plays a major cell cycle regulatory role, Imp2 phosphorylation is primarily constitutive, with milder effects on localization and function. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38511077

RESUMO

The Schizosaccharomyces pombe Gas family of ß-1,3-glucanosyltransferases modify the cell wall by elongating ß-1,3-glucan chains. While gas1Δ cells are inviable under standard laboratory growth conditions, they are viable in the presence of an osmotic stabilizer. Even under these conditions however, gas1Δ cells are slow-growing and display cell separation and morphology defects. Here, we isolated and characterized two gas1 temperature-sensitive alleles. Our data support that Gas1 is the primary S. pombe ß-1,3-glucanosyltransferase important for cell separation and cell viability and provide useful tools for further analysis of S. pombe cell wall formation.

4.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37746062

RESUMO

The Schizosaccharomyces pombe F-BAR protein, Cdc15, facilitates the linkage between the cytokinetic ring and the plasma membrane. Cdc15 is phosphorylated on many sites by four polarity kinases and this antagonizes membrane interaction. Dephosphorylation of Cdc15 during mitosis induces its phase separation, allowing oligomerization, membrane association, and protein partner binding. Here, using live cell imaging we examined whether spatial separation of Cdc15 from its four identified kinases potentially explains their diverse effects on tip septation and the mitotic Cdc15 phosphorylation state. We identified a correlation between kinase localization and their ability to antagonize Cdc15 cytokinetic ring and membrane localization.

5.
Elife ; 122023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749320

RESUMO

The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15's abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases' abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid-liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.


Assuntos
Proteínas de Ciclo Celular , Citocinese , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Nat Cell Biol ; 25(11): 1691-1703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845327

RESUMO

Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
7.
Mol Biol Cell ; 33(4): br4, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108037

RESUMO

The F-BAR protein Cdc15 mediates attachment of the cytokinetic ring (CR) to the plasma membrane and is essential for cytokinesis in Schizosaccharomyces pombe. While its N-terminal F-BAR domain is responsible for oligomerization and membrane binding, its C-terminal SH3 domain binds other partners at a distance from the membrane. We previously demonstrated that the essential cytokinetic formin Cdc12, through an N-terminal motif, directly binds the cytosolic face of the F-BAR domain. Here, we show that paxillin-like Pxl1, which is important for CR stability, contains a motif highly related to that in formin Cdc12, and also binds the Cdc15 F-BAR domain directly. Interestingly, Pxl1 has a second site for binding the Cdc15 SH3 domain. To understand the importance of these two Pxl1-Cdc15 interactions, we mapped and disrupted both. Disrupting the Pxl1-Cdc15 F-BAR domain interaction reduced Pxl1 levels in the CR, whereas disrupting Pxl1's interaction with the Cdc15 SH3 domain, did not. Unexpectedly, abolishing Pxl1-Cdc15 interaction greatly reduced but did not eliminate CR Pxl1 and did not significantly affect cytokinesis. These data point to another mechanism of Pxl1 CR recruitment and show that very little CR Pxl1 is sufficient for its cytokinetic function.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas do Citoesqueleto/metabolismo , Forminas , Proteínas de Ligação ao GTP/metabolismo , Paxilina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
FEBS Lett ; 595(22): 2781-2792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674264

RESUMO

The timing of cytokinesis relative to other mitotic events in the fission yeast Schizosaccharomyces pombe is controlled by the septation initiation network (SIN). During a mitotic checkpoint, the SIN is inhibited by the E3 ubiquitin ligase Dma1 to prevent chromosome mis-segregation. Dma1 dynamically localizes to spindle pole bodies (SPBs) and the contractile ring (CR) during mitosis, though its role at the CR is unknown. Here, we examined whether Dma1 phosphorylation affects its localization or function. We found that preventing Dma1 phosphorylation by substituting the six phosphosites with alanines diminished its CR localization but did not affect its mitotic checkpoint function. These studies reinforce the conclusion that Dma1 localization to the SPB is key to its role in the mitotic checkpoint.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilação , Transporte Proteico , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA