Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(5): 6834-6844, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726195

RESUMO

In recent development of quantum technologies, a frequency conversion of quantum signals has been studied widely. We investigate the optic-microwave entanglement that is generated by applying an electro-optomechanical frequency conversion scheme to one mode in an optical two-mode squeezed vacuum state. We quantify entanglement of the converted two-mode Gaussian state, where surviving entanglement of the state is analyzed with respect to the parameters of the electro-optomechanical system. Furthermore, we show that there exists an upper bound for the entanglement that survives after the conversion of highly entangled optical states. Our study provides a theoretical platform for a practical quantum illumination system.

2.
Opt Lett ; 44(2): 447-450, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644922

RESUMO

The development of quantum photonic information technology demands high-quality photon sources. Here we demonstrate a low-noise and high-speed photon source generated by the spontaneous four-wave mixing process in a micro/nanofiber (MNF). The pair generation in a MNF is tailorable by controlling its diameter and designed for creating signal and idler photons in the silicon-based detector wavelength range, yielding high detection efficiency and coincidence count rate. This MNF photon source can be coupled to other fiber systems with negligible coupling loss and can be efficiently exploited as fiber-based quantum light sources for quantum information applications.

3.
Phys Rev Lett ; 122(12): 123607, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978083

RESUMO

In quantum communication and photonic quantum information processing, the requirement of quantum repeaters and quantum memory often imposes a strict bandwidth prerequisite for the entangled photons. At the same time, there is ever more increasing demand for entangling more degrees of freedom, i.e., hyperentanglement, for a photon pair. In this Letter, we report the direct generation of narrow-band orbital angular momentum (OAM) and polarization hyperentangled photons from cold atoms. The narrow-band photon pair is naturally entangled in polarization and OAM, in addition to time-frequency, degrees of freedom due to spin and orbital angular momentum conservation conditions in the spontaneous four-wave mixing process in a cold atom ensemble. The narrow-band hyperentangled photon pair source reported here is expected to play important roles in quantum memory-based long-distance quantum communication.

4.
Phys Rev Lett ; 119(26): 263603, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328723

RESUMO

We report the observation of a counterintuitive phenomenon in multipath correlation interferometry with thermal light. The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers (UMZIs) with two classically correlated beams of thermal light at the input exhibits genuine second-order interference with the visibility of 1/3. Surprisingly, the second-order interference does not degrade at all no matter how much the path length difference in each UMZI is increased beyond the coherence length of the thermal light. Moreover, the second-order interference is dependent on the difference of the UMZI phases. These results differ substantially from those of the entangled-photon Franson interferometer, which exhibits two-photon interference dependent on the sum of the UMZI phases and the interference vanishes as the path length difference in each UMZI exceeds the coherence length of the pump laser. Our work offers deeper insight into the interplay between interference and coherence in multiphoton interferometry.

5.
Sci Rep ; 12(1): 11787, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821516

RESUMO

We provide a method to evaluate effects of a lossy and noisy optical channel in computational ghost imaging (CGI) technique. Instead of preparing an external noise source, we simulate the optical channel with a basic CGI experiment using programmatically generated noise-induced patterns. By using our method, we show that CGI can reject a noise of which intensity is similar with an imaging signal intensity at a target. The results with our method are well matched with experimental ones including external noise source. This method would provide useful knowledge to analyze environmental effects in CGI without realization of the environment.


Assuntos
Diagnóstico por Imagem , Ruído , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA