Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Hematol ; 118: 40-52, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535407

RESUMO

Chronic myeloid leukemia (CML) is a clonal hematopoietic malignancy driven by the BCR-ABL1 fusion oncoprotein. The development of tyrosine kinase inhibitors (TKIs) has deeply increased long-term survival of CML patients. Nonetheless, one patient out of four will switch TKI off owing either to drug intolerance or resistance partly due to amplification or mutations of BCR-ABL1 oncogene and alteration in ATP-binding cassette (ABC) transporters. Increasing evidence suggests the involvement of the microRNA miR-495-3p in cancer-associated chemoresistance through multidrug resistance 1 (MDR1) gene, which encodes an ATP-dependent efflux pump. Our study aimed at investigating the potential role of miR-495-3p in CML TKI chemo-sensitivity and determining the underlying molecular circuitry involved. We first observed that miR-495-3p expression was lower in BCR-ABL1-expressing cellular models in vitro. Notably, loss-of-function experiments showed increased proliferation associated with a decreased number of nondividing cells (G0/G1) and resistance to Imatinib. Conversely, our data showed that miR-495-3p overexpression hindered leukemic cell growth and TKI resistance in Imatinib-resistant T315I-mutant cells, as well as drug efflux activity through MDR1 regulation. Further investigating the role of miR-495-3p in CML patients, we found that predicted miR-495-3p targets were upregulated in patients in blast crisis that were involved in protein phosphorylation and associated with the worst prognosis. Taken together, our results demonstrate that downregulation of miR-495-3p expression is important in the malignant phenotype of CML and TKI resistance mechanisms and could be a useful biomarker and a potential therapeutic target to eradicate CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Humanos , Mesilato de Imatinib/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Resistência a Múltiplos Medicamentos , Trifosfato de Adenosina
2.
Exp Hematol ; 124: 22-35.e3, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331423

RESUMO

Generating hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has been a long-lasting quest in the field of hematopoiesis. Previous studies suggested that enforced expression of BCR-ABL, the unique oncogenic driver of chronic myelogeneous leukemia (CML), in embryonic stem cells (ESCs)-derived hematopoietic cells is sufficient to confer long-term in vivo repopulating potential. To precisely uncover the molecular events regulated by the tyrosine kinase activity of BCR-ABL1 (p210) during the course of hematopoietic differentiation, we engineered a Tet-ON inducible system to modulate its expression in murine ESCs (mESCs). We showed in unique site-directed knock-in ESC model that BCR-ABL expression tightly regulated by doxycycline (dox) controls the formation and the maintenance of immature hematopoietic progenitors. Interestingly, these progenitors can be expanded in vitro for several passages in the presence of dox. Our analysis of cell surface markers and transcriptome compared with wild-type fetal and adult HSCs unraveled a similar molecular signature. Long-term culture initiating cell (LTC-IC) assay confirmed their self-renewal capacities albeit with a differentiation bias toward erythroid and myeloid cells. Collectively, our novel Tet-ON system represents a unique in vitro model to shed lights on ESC-derived hematopoiesis, CML initiation, and maintenance.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Camundongos , Animais , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Doxiciclina/farmacologia , Doxiciclina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA