Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biochem Biophys Res Commun ; 646: 50-55, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36706705

RESUMO

Post-translational modification (PTM) is crucial for many biological events, such as the modulation of bone metabolism. Phosphorylation and O-GlcNAcylation are two examples of PTMs that can occur at the same site in the protein: serine and threonine residues. This phenomenon may cause crosstalk and possible interactions between the molecules involved. Protein phosphatase 2 A (PP2A) is widely expressed throughout the body and plays a major role in dephosphorylation. At the same location where PP2A acts, O-GlcNAc transferase (OGT) can introduce uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) molecules and mediates O-GlcNAc modifications. To examine the effects of PP2A inhibition on OGT localization and expression, osteoblastic MC3T3-E1 cells were treated with Okadaic Acid (OA), a potent PP2A inhibitor. In the control cells, OGT was strictly localized in the nucleus. However, OGT was observed diffusely in the cytoplasm of the OA-treated cells. This change in localization from the nucleus to the cytoplasm resulted from an increase in mitochondrial OGT expression and translocation of the nucleocytoplasmic isoform. Furthermore, knockdown of PP2A catalytic subunit α isoform (PP2A Cα) significantly affected OGT expression (p < 0.05), and there was a correlation between PP2A Cα and OGT expression (r = 0.93). These results suggested a possible interaction between PP2A and OGT, which strengthens the notion of an interaction between phosphorylation and O-GlcNAcylation.


Assuntos
Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Proteína Fosfatase 2/metabolismo , Ácido Okadáico/farmacologia , N-Acetilglucosaminiltransferases/metabolismo , Isoformas de Proteínas/metabolismo , Acetilglucosamina/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108554

RESUMO

Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for several ligands, is highly expressed in many kinds of mesenchymal stem cells (MSCs), but its function is poorly understood. In this study, we explored the roles of full-length NRP1 and glycosaminoglycan (GAG)-modifiable NRP1 in adipogenesis in C3H10T1/2 cells. The expression of full-length NRP1 and GAG-modifiable NRP1 increased during adipogenic differentiation in C3H10T1/2 cells. NRP1 knockdown repressed adipogenesis while decreasing the levels of Akt and ERK1/2 phosphorylation. Moreover, the scaffold protein JIP4 was involved in adipogenesis in C3H10T1/2 cells by interacting with NRP1. Furthermore, overexpression of non-GAG-modifiable NRP1 mutant (S612A) greatly promoted adipogenic differentiation, accompanied by upregulation of the phosphorylated Akt and ERK1/2. Taken together, these results indicate that NRP1 is a key regulator that promotes adipogenesis in C3H10T1/2 cells by interacting with JIP4 and activating the Akt and ERK1/2 pathway. Non-GAG-modifiable NRP1 mutant (S612A) accelerates the process of adipogenic differentiation, suggesting that GAG glycosylation is a negative post-translational modification of NRP1 in adipogenic differentiation.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Adipogenia/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo
3.
Calcif Tissue Int ; 111(3): 331-344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750933

RESUMO

Our previous gene profiling analysis showed that the transcription cofactor vestigial-like 3 (VGLL3) gene expression was upregulated by mechanical tension in the mouse cranial suture, coinciding with accelerated osteoblast differentiation. Therefore, we hypothesized that VGLL3 plays a significant role in osteogenic differentiation. To clarify the function of VGLL3 in osteoblasts, we examined its expression characteristics in mouse bone tissue and the osteoblastic cell line MC3T3-E1. We further examined the effects of Vgll3 knockdown on osteoblast differentiation and bone morphogenetic protein (BMP) signaling. In the mouse cranial suture, where membranous ossification occurs, VGLL3 was immunohistochemically detected mostly in the nucleus of osteoblasts, preosteoblasts, and fibroblastic cells. VGLL3 expression in MC3T3-E1 cells was transient and peaked at a relatively early stage of differentiation. RNA sequencing revealed that downregulated genes in Vgll3-knockdown cells were enriched in gene ontology terms associated with osteoblast differentiation. Interestingly, most of the upregulated genes were related to cell division. Targeted Vgll3 knockdown markedly suppressed the expression of major osteogenic transcription factors (Runx2, Sp7/osterix, and Dlx5) and osteoblast differentiation. It also attenuated BMP signaling; moreover, exogenous BMP2 partially restore osteogenic transcription factors' expression in Vgll3-knockdown cells. Furthermore, overexpression of Vgll3 increased the expression of osteogenic transcription factors. These results suggest that VGLL3 plays a critical role in promoting osteoblast differentiation and that part of the process is mediated by BMP signaling. Further elucidation of VGLL3 function will increase our understanding of osteogenesis and skeletal disease etiology.


Assuntos
Osteogênese , Fatores de Transcrição , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
4.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960027

RESUMO

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Assuntos
Hipergravidade , Ausência de Peso , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , RNA Mensageiro/genética
5.
Am J Orthod Dentofacial Orthop ; 158(6): e151-e160, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33139146

RESUMO

INTRODUCTION: The Wnt signaling pathway acts as a key regulator of skeletal development and its homeostasis. However, the potential role of Wnt1 in the mechanotransduction machinery of orthodontic tooth movement-initiated bone remodeling is still unclear. Hence, this study focused on the regulatory dynamics of the Wnt1 expression in both the periodontal ligament (PDL) and osteocytes in vivo and in vitro. METHODS: The Wnt1 expression in the orthodontically moved maxillary first molar in mice was assessed at 0, 1, and 5 days, on both the compression and tension sides. Primary isolated human PDL (hPDL) fibroblasts, as well as murine long-bone osteocyte-Y4 (MLO-Y4) cells, were exposed to continuous compressive force and static tensile force. RESULTS: The relative quantification of immunodetection showed that orthodontic tooth movement significantly stimulated the Wnt1 expression in both the PDL and alveolar osteocytes on the tension side on day 5, whereas the expression on the compression side did not change. This increase in the Wnt1 expression, shown in vivo, was also noted after the application of 12% static tensile force in isolated hPDL fibroblasts and 20% in MLO-Y4 cells. In contrast, a compressive force led to the attenuation of the Wnt1 gene expression in both hPDL fibroblasts and MLO-Y4 cells in a force-dependent manner. In the osteocyte-PDL coculture system, recombinant sclerostin attenuated Wnt1 in PDL, whereas the antisclerostin antibody upregulated its gene expression, indicating that mechanically-driven Wnt1 signaling in PDL might be regulated by osteocytic sclerostin. CONCLUSIONS: Our findings provide that Wnt1 signaling plays a vital role in tooth movement-initiated bone remodeling via innovative mechanotransduction approaches.


Assuntos
Mecanotransdução Celular , Técnicas de Movimentação Dentária , Animais , Remodelação Óssea , Camundongos , Osteócitos , Ligamento Periodontal , Estresse Mecânico , Proteína Wnt1/genética
6.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286565

RESUMO

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/uso terapêutico , Voo Espacial , Animais , Densidade Óssea/efeitos dos fármacos , Calcitonina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Carpa Dourada , Imuno-Histoquímica , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ausência de Peso/efeitos adversos
7.
Artigo em Inglês | MEDLINE | ID: mdl-27643756

RESUMO

Increased risk of fracture associated with type 2 diabetes has been a topic of recent concern. Fracture risk is related to a decrease in bone strength, which can be affected by bone metabolism and the quality of the bone. To investigate the cause of the increased fracture rate in patients with diabetes through analyses of bone metabolism and bone matrix protein properties, we used goldfish scales as a bone model for hyperglycemia. Using the scales of seven alloxan-treated and seven vehicle-treated control goldfish, we assessed bone metabolism by analyzing the activity of marker enzymes and mRNA expression of marker genes, and we measured the change in molecular weight of scale matrix proteins with SDS-PAGE. After only a 2-week exposure to hyperglycemia, the molecular weight of α- and ß-fractions of bone matrix collagen proteins changed incrementally in the regenerating scales of hyperglycemic goldfish compared with those of euglycemic goldfish. In addition, the relative ratio of the γ-fraction significantly increased, and a δ-fraction appeared after adding glyceraldehyde-a candidate for the formation of advanced glycation end products in diabetes-to isolated type 1 collagen in vitro. The enzymatic activity and mRNA expression of osteoblast and osteoclast markers were not significantly different between hyperglycemic and euglycemic goldfish scales. These results indicate that hyperglycemia is likely to affect bone quality through glycation of matrix collagen from an early stage of hyperglycemia. Therefore, non-enzymatic glycation of collagen fibers in bone matrix may lead to the deterioration of bone quality from the onset of diabetes.


Assuntos
Osso e Ossos/metabolismo , Hiperglicemia/metabolismo , Aloxano/administração & dosagem , Animais , Glicemia/metabolismo , Eletroforese em Gel de Poliacrilamida , Carpa Dourada
8.
Artigo em Inglês | MEDLINE | ID: mdl-26850473

RESUMO

Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure.


Assuntos
Apoptose , Carpa Dourada/metabolismo , Modelos Animais , Osteoclastos/metabolismo , Ultrassom , Animais , Osteoclastos/citologia
9.
Zoolog Sci ; 30(3): 217-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23480382

RESUMO

Fish scales are a form of calcified tissue similar to that found in human bone. In medaka scales, we detected both osteoblasts and osteoclasts and subsequently developed a new scale assay system. Using this system, we analyzed the osteoblastic and osteoclastic responses under 2-, 3-, and 4-gravity (G) loading by both centrifugation and vibration. After loading for 10 min, the scales from centrifugal and vibration loading were incubated for 6 and 24 hrs, respectively, after which the osteoblastic and osteoclastic activities were measured. Osteoblastic activity significantly increased under 2- to 4-G loading by both centrifugation and vibration. In contrast, we found that osteoclastic activity significantly decreased under 2- and 3-G loading in response to both centrifugation and vibration. Under 4-G loading, osteoclastic activity also decreased on centrifugation, but significantly increased under 4-G loading by vibration, concomitant with markedly increased osteoblastic activity. Expression of the receptor activator of the NF-κB ligand (RANKL), an activation factor of osteoclasts expressed in osteoblasts, increased significantly under 4-G loading by vibration but was unchanged by centrifugal loading. A protein sequence similar to osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, was found in medaka using our sequence analysis. The ratio of RANKL/OPG-like mRNAs in the vibration-loaded scales was significantly higher than that in the control scales, although there was no difference between centrifugal loaded scales and the control scales. Accordingly, medaka scales provide a useful model by which to analyze bone metabolism in response to physical strain.


Assuntos
Hipergravidade , Oryzias/anatomia & histologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Regulação da Expressão Gênica/fisiologia , Osteoblastos/citologia , Osteoclastos/citologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo
10.
Int J Mol Sci ; 14(11): 22721-40, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24252911

RESUMO

Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm(2)) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells.


Assuntos
Regulação da Expressão Gênica/genética , Osteoblastos/metabolismo , Transcriptoma/genética , Terapia por Ultrassom , Células 3T3 , Animais , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Osteoblastos/diagnóstico por imagem , Transcriptoma/efeitos da radiação , Ultrassonografia
11.
Anat Sci Int ; 98(4): 521-528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37022568

RESUMO

Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.


Assuntos
Actinas , Osteoblastos , Osteoblastos/fisiologia , Osso e Ossos , Divisão Celular
12.
Jpn Dent Sci Rev ; 57: 138-146, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34484474

RESUMO

Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called "Outer Membrane Vesicles" (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra- and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized.

13.
Biofactors ; 47(6): 992-1015, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418170

RESUMO

This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Biologia Computacional/métodos , N-Acetilglucosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Animais , Camundongos , Modelos Animais
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389473

RESUMO

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Assuntos
Vesículas Extracelulares/imunologia , Lesão Pulmonar/imunologia , Macrófagos/imunologia , Periodontite/complicações , Porphyromonas gingivalis/imunologia , Células A549 , Animais , Infecções por Bacteroidaceae , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lesão Pulmonar/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Células THP-1
15.
J Cell Physiol ; 222(2): 465-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19918795

RESUMO

The periodontal ligament (PDL), a connective tissue located between the cementum of teeth and the alveolar bone of mandibula, plays a crucial role in the maintenance and regeneration of periodontal tissues. The PDL contains fibroblastic cells of a heterogeneous cell population, from which we have established several cell lines previously. To analyze characteristics unique for PDL at a molecular level, we performed cDNA microarray analysis of the PDL cells versus MC3T3-E1 osteoblastic cells. The analysis followed by validation by reverse transcription-polymerase chain reaction and immunochemical staining revealed that endoglin, which had been shown to associate with transforming growth factor (TGF)-beta and bone morphogenetic proteins (BMPs) as signaling modulators, was abundantly expressed in PDL cells but absent in osteoblastic cells. The knockdown of endoglin greatly suppressed the BMP-2-induced osteoblastic differentiation of PDL cells and subsequent mineralization. Interestingly, the endoglin knockdown did not alter the level of Smad-1/5/8 phosphorylation induced by BMP-2, while it suppressed the BMP-2-induced expression of Id1, a representative BMP-responsive gene. Therefore, it is conceivable that endoglin regulates the expression of BMP-2-responsive genes in PDL cells at some site downstream of Smad-1/5/8 phosphorylation. Alternatively, we found that Smad-2 as well as Smad-1/5/8 was phosphorylated by BMP-2 in the PDL cells, and that the BMP-2-induced Smad-2 phosphorylation was suppressed by the endoglin knockdown. These results, taken together, raise a possibility that PDL cells respond to BMP-2 via a unique signaling pathway dependent on endoglin, which is involved in the osteoblastic differentiation and mineralization of the cells.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteoblastos/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Linhagem Celular , Endoglina , Perfilação da Expressão Gênica/métodos , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese/genética , Ligamento Periodontal/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-20223292

RESUMO

The adaptive response of bone to mechanical loading in teleosts is not well understood. We recently developed a new assay system using teleost scales, which consists of osteoblasts, osteoclasts, and bone matrix protein. In this system, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) were used as markers of osteoblasts and osteoclasts, respectively. Using this assay system, we examined the effects of mechanical loading on ALP and TRAP activity in goldfish scales. ALP activity in the scales was significantly elevated (p<0.01) by ultrasound stimuli (1 MHz, 50% duty factor, 0.5 Hz pulse repetition frequency, 60 mW/cm(2) [I(SATA)] and 6 min) after both 18 h and 24h of incubation while TRAP activity remained unchanged. In addition, mRNA expression of both insulin-like growth factor-I (IGF-I) and estrogen receptors (ER) increased significantly, as did ALP activity. After the goldfish had been swimming for 3 days (speed: 2 body lengths/second, duration: 3h/day), the scales' ALP activity increased significantly (p<0.01) but TRAP activity did not change. These in vitro and in vivo results strongly suggest that osteoblasts in the goldfish scale respond sensitively to mechanical stress and may be important in promoting bone formation.


Assuntos
Estruturas Animais/metabolismo , Carpa Dourada/fisiologia , Osteoblastos/metabolismo , Estresse Mecânico , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Estruturas Animais/enzimologia , Animais , Radicais Livres/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Isoenzimas/metabolismo , Osteoblastos/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Natação/fisiologia , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo , Ultrassom
17.
J Oral Biosci ; 62(1): 16-29, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31982630

RESUMO

BACKGROUND: Bacteria exhibit multi-cellular social behavior, such as biofilm formation, virulence generation, bioluminescence, or sporulation, through cell-to-cell communication involving a quorum sensing (QS) system capable of sensing species density. Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous gram-negative opportunistic pathogen that is frequently isolated from immunocompromised patients. It is particularly detected in patients with severe periodontitis and persistent endodontic infections, forcing a rethink of the role of this opportunistic pathogen in oral lesions. HIGHLIGHT: N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) is a pivotal QS molecule, which regulates numerous virulence genes in P. aeruginosa and exhibits broad biological modulation effects in mammalian cells. In this review, we highlight the diverse OdDHL-mediated apoptosis and immunomodulatory effects on host cells. The structural properties, signaling pathways, targeted genes and proteins, and intracellular metabolism of OdDHL are also discussed to clarify the interactions between P. aeruginosa and the host. CONCLUSION: The purpose of this review is to identify a valid target for quenching OdDHL, which could potentially eliminate the pathogenic effect of P. aeruginosa.


Assuntos
Homosserina , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Animais , Homosserina/análogos & derivados , Humanos , Lactonas , Pseudomonas aeruginosa
18.
Anat Sci Int ; 95(2): 202-208, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31732869

RESUMO

Retinoic acid (RA), an active metabolite of vitamin A, plays pivotal roles in a wide variety of biological processes, such as body patterning, organ development, and cell differentiation and proliferation. RA signaling is mediated by nuclear retinoic acid receptors, α, ß, and γ (RARα, RARß, and RARγ). RA is a well-known regulator of cartilage and skeleton formation and RARs are also essential for skeletal growth and hypertrophic chondrocyte-specific gene expression. These important roles of RA and RARs in chondrogenesis have been widely investigated using in vivo mouse models. However, few reports are available on the function of each subtype of RARs on in vitro chondrocyte differentiation. Here, we examined the effect of specific agonists of RARs on chondrogenic differentiation of ATDC5 and C3H10T1/2 cells. Subtype-specific RAR agonists as well as RA decreased the expressions of chondrogenic differentiation marker genes and inhibited chondrogenic differentiation, which was accompanied with morphological change to spindle-shaped cells. Among RAR agonists, RARα and RARγ agonists revealed a strong inhibitory effect on chondrogenic differentiation. RARα and RARγ agonists also hampered viability of ATDC5 cells. These observations suggested that RARα and RARγ are dominant receptors of RA signaling that negatively regulate chondrogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrócitos/fisiologia , Receptores do Ácido Retinoico/agonistas , Vitamina A/farmacologia , Vitamina A/fisiologia , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrogênese , Depressão Química , Expressão Gênica , Camundongos , Osteogênese/efeitos dos fármacos , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Cell Signal ; 75: 109740, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818672

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 µM and 50 µM AHL triggered opposing osteoblast fates. At 50 µM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 µM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 µM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 µM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 µM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.


Assuntos
4-Butirolactona/análogos & derivados , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Homosserina/análogos & derivados , Osteoblastos/patologia , Periodontite/microbiologia , Pseudomonas aeruginosa/patogenicidade , 4-Butirolactona/toxicidade , Animais , Linhagem Celular , Homosserina/toxicidade , Camundongos , Percepção de Quorum
20.
Acta Histochem ; 122(6): 151596, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32778234

RESUMO

Melatonin has recently been found to be a possible new regulator of bone metabolism. However, the influence of melatonin in natural age-related osteoporosis has not been fully elucidated yet, although there have been some reports regarding postmenopausal osteoporosis with melatonin treatments. The present study investigated the effects of long-term melatonin administration during the aging process on bone metabolism. Using quantitative computed tomography methods, we found that the total bone density of both the femur metaphysis and diaphysis decreased significantly in 20-month-old male mice. In the metaphysis, both trabecular bone mass and Polar-Strength Strain Index (SSI), which is an index of bone strength, decreased significantly. Judging from bone histomorphometry analysis, trabecular bone in 20-month-old male mice decreases significantly with age and is small and sparse, as compared to that of 4-month-old male mice. Loss of trabecular bone is one possible cause of loss of bone strength in the femoral bone. In the metaphysis, the melatonin administration group had significantly higher trabecular bone density than the non-administration group. The Polar-SSI, cortical area, and periosteal circumference in the diaphysis was also significantly higher with melatonin treatments. Since the melatonin receptor, MT2, was detected in both osteoblasts and osteoclasts of the femoral bone of male mice, we expect that melatonin acts on osteoblasts and osteoclasts to maintain the bone strength of the diaphysis and metaphysis. Thus, melatonin is a potential drug for natural age-related osteoporosis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Água Potável/administração & dosagem , Melatonina/administração & dosagem , Melatonina/farmacologia , Administração Oral , Envelhecimento/metabolismo , Animais , Masculino , Camundongos , Receptores de Melatonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA