Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 206(5): 1013-1026, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462138

RESUMO

There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.


Assuntos
Leishmania major/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Fosfoenolpiruvato/metabolismo , Fatores de Virulência/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Citocinas/imunologia , Feminino , Imunidade Celular/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Fosfoenolpiruvato/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Fatores de Virulência/imunologia
2.
J Immunol ; 206(3): 588-598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443083

RESUMO

Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/metabolismo , Semaforinas/metabolismo , Células Th1/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Tolerância Imunológica , Leishmaniose Cutânea/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Semaforinas/genética
3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569410

RESUMO

Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Radiocirurgia , Feminino , Humanos , Neoplasias da Mama/genética , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/genética
4.
J Immunol ; 205(5): 1355-1364, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32727889

RESUMO

There is currently no clinically effective vaccine against cutaneous leishmaniasis because of poor understanding of the Ags that elicit protective CD4+ T cell immunity. In this study, we identified a naturally processed peptide (DLD63-79) that is derived from Leishmania dihydrolipoyl dehydrogenase (DLD) protein. DLD is conserved in all pathogenic Leishmania species, is expressed by both the promastigote and amastigote stages of the parasite, and elicits strong CD4+ T cell responses in mice infected with L. major We generated I-Ab-DLD63-79 tetramer and identified DLD-specific CD4+ T cells at clonal level. Following L. major infection, DLD63-79-specific CD4+ T cells massively expanded and produced effector cytokines (IFN-γ and TNF). This was followed by a gradual contraction, stable maintenance following lesion resolution, and display of memory (recall) response following secondary challenge. Vaccination with rDLD protein induced strong protection in mice against virulent L. major challenge. Identification of Ags that elicit protective immunity and their responding Ag-specific T cells are critical steps necessary for developing effective vaccines and vaccination strategies against infectious agents, including protozoan parasites.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Di-Hidrolipoamida Desidrogenase/imunologia , Leishmania/imunologia , Animais , Linhagem Celular , Feminino , Interferon gama/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
J Immunol ; 203(4): 964-971, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243088

RESUMO

NK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases, their role in immunity to Trypanosoma congolense has not been investigated. NK cells are vital sources of IFN-γ and TNF-α; two key cytokines that are known to play important roles in resistance to African trypanosomes. In this article, we show that infection with T. congolense leads to increased levels of activated and functional NK cells in multiple tissue compartments. Systemic depletion of NK cells with anti-NK1.1 mAb led to increased parasitemia, which was accompanied by significant reduction in IFN-γ production by immune cells in the spleens and liver of infected mice. Strikingly, infected NFIL3-/- mice (which genetically lack NK cell development and function) on the normally resistant background were highly susceptible to T. congolense infection. These mice developed fulminating and uncontrolled parasitemia and died significantly earlier (13 ± 1 d) than their wild-type control mice (106 ± 26 d). The enhanced susceptibility of NFIL3-/- mice to infection was accompanied by significantly impaired cytokine (IFN-γ and TNF-α) response by CD3+ T cells in the spleens and liver. Adoptive transfer of NK cells into NFIL3-/- mice before infection rescued them from acute death in a perforin-dependent manner. Collectively, these studies show that NK cells are critical for optimal resistance to T. congolense, and its deficiency leads to enhanced susceptibility in infected mice.


Assuntos
Células Matadoras Naturais/imunologia , Tripanossomíase Africana/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trypanosoma congolense/imunologia
6.
J Immunol ; 201(2): 507-515, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29898961

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow-derived myeloid cells that have immune-suppressive activities. These cells have been reported to suppress T cell immunity against tumors as well as in some parasitic and bacterial infections. However, their role during Trypanosoma congolense infection has not been studied. Given that immunosuppression is a hallmark of African trypanosomiasis, we investigated the role of MDSCs in immunity to T. congolense infection. We found increased numbers of MDSCs in the spleen and liver of infected mice, which correlated with increased parasitemia. Depletion of MDSCs significantly increased the percentage of proliferating and IFN-γ-producing CD4+ T cells from the spleen of T. congolense-infected mice. Furthermore, MDSCs from T. congolense-infected mice directly suppressed CD4+ T cell proliferation in a coculture setting. This suppressive effect was abolished by the arginase-1 inhibitor, Nω-hydroxy-nor-l-arginine (nor-NOHA), indicating that MDSCs suppress CD4+ T cell proliferation and function in an arginase-1-dependent manner. Indeed, depletion of MDSCs during infection led to control of the first wave of parasitemia and prolonged survival of infected mice. This was also associated with increased CD4+ T cell proliferation and IFN-γ production. Taken together, our findings identify an important role of MDSCs in the pathogenesis of experimental T. congolense infection via suppression of T cell proliferative and effector cytokine responses in an arginase-1-dependent manner.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Interferon gama/imunologia , Células Supressoras Mieloides/imunologia , Trypanosoma congolense/imunologia , Tripanossomíase Africana/imunologia , Animais , Arginase/imunologia , Feminino , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/imunologia , Baço/imunologia
7.
mBio ; 14(5): e0205323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37747190

RESUMO

Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Humanos , Replicação Viral , Latência Viral
8.
Front Microbiol ; 14: 1275365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954253

RESUMO

African trypanosomiasis, a neglected tropical disease, is caused by diverse species of the protozoan parasite belonging to the genus Trypanosoma. Although anti-trypanosomal medications exist, the increase in drug resistance and persistent antigenic variation has necessitated the development of newer and more efficacious therapeutic agents which are selectively toxic to the parasite. In this study, we assessed the trypanocidal efficacy of Crosspteryx fibrifuga leaf extract (C.f/L-extract) in vitro. Following treatment of T. congolense parasites with C.f/L-extract, we observed a significant decrease in parasite number and an elevation in the expression of the apoptotic markers, Annexin V and 7-Aminoactinomycin D (7AAD). Interestingly, at the same concentration (50 µg/mL), C.f/L-extract was not cytotoxic to murine whole splenocytes. We also observed a significant increase in pro-inflammatory cytokines and nitric oxide secretion by bone marrow derived macrophages following treatment with C.f/L-extract (10 µg/mL and 50 µg/mL) compared to PBS treated controls, suggesting that the extract possesses an immune regulatory effect. Treatment of T. congolense infected mice with C.f/L-extract led to significant decrease in parasite numbers and a modest increase in mouse survival compared to PBS treated controls. In addition, there was a significant increase in CD4+IFN-γ+ T cells and a decrease in CD4+IL-10+ T cells in the spleens of T. congolense infected mice treated with C.f/L-extract. Interestingly, C.f/L-extract treatment decreased the activity of superoxide dismutase (an enzyme that protects unicellular organisms from oxidative stress) in T. congolense parasites but not in splenocytes. Collectively, our study has identified C.f/L-extract as a potential anti-trypanosomal agent that warrant further investigation and possibly explored as a treatment option for T. congolense infection.

9.
Mucosal Immunol ; 16(3): 341-356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121385

RESUMO

Neutrophil recruitment and activation within the female genital tract are often associated with tissue inflammation, loss of vaginal epithelial barrier integrity, and increased risk for sexually transmitted infections, such as HIV-1. However, the direct role of neutrophils on vaginal epithelial barrier function during genital inflammation in vivo remains unclear. Using complementary proteome and immunological analyses, we show high neutrophil influx into the lower female genital tract in response to physiological surges in progesterone, stimulating distinct stromal, immunological, and metabolic signaling pathways. However, despite the release of extracellular matrix-modifying proteases and inflammatory mediators, neutrophils contributed little to physiological mucosal remodeling events such as epithelial shedding or re-epithelialization during transition from diestrus to estrus phase. In contrast, the presence of bacterial vaginosis-associated bacteria resulted in a rapid and sustained neutrophil recruitment, resulting in vaginal epithelial barrier leakage and decreased cell-cell junction protein expression in vivo. Thus, neutrophils are important mucosal sentinels that rapidly respond to various biological cues within the female genital tract, dictating the magnitude and duration of the ensuing inflammatory response at steady state and during disease processes.


Assuntos
Neutrófilos , Infecções Sexualmente Transmissíveis , Feminino , Humanos , Inflamação , Genitália Feminina , Vagina , Bactérias
10.
Mol Immunol ; 144: 152-165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219912

RESUMO

Immunometabolism plays a crucial role in the activation and functional plasticity of immune cells, which in large determines a variety of health and disease states. Factors that integrate immunometabolism in immune cell signaling and functions are beginning to be identified. Previously, we have reported that two transgenic mouse models, Mito-Ob and mutant Mito-Ob (m-Mito-Ob), overexpressing a pleiotropic protein, prohibitin (PHB) or a mutant form of PHB (Tyr114Phe-PHB or m-PHB), respectively, developed distinct immunometabolic phenotypes. Specifically, the immune phenotype appears to be driven by the monocytic cell lineage. Based on immunophenotyping of their splenocytes, we focused our attention on macrophages and hypothesized that PHB may play a role in regulating the two functionally polarized states, M1 and M2. Here, we report that macrophage polarization to the M1 and M2 phenotypes did not alter PHB protein level, but overexpression of PHB in macrophages differentially affected cytokine production in the two polarized states. Furthermore, we found that mutation of the Tyr114 phosphorylation site in PHB affects ERK and STAT6 signaling, arginase synthesis and activity, and mitochondrial respiration in macrophages indicating an important role of PHB in integrating cell signaling events with cell metabolism. In summary, we have discovered that PHB is a crucial regulator in the functional plasticity of macrophages. These initial studies expect to lay the foundation for future research into the relationship between cell signaling events pertaining to immunometabolism in immune cell functions, which are integral components of immune-related health and disease.


Assuntos
Proibitinas , Proteínas Repressoras , Animais , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Cancers (Basel) ; 13(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638283

RESUMO

The tumor microenvironment plays a pivotal role in the tumorigenesis, progression, and metastatic spread of many cancers including breast. There is now increasing evidence to support the observations that a bidirectional interplay between breast cancer cells and stromal cells exists within the tumor and the tumor microenvironment both at the primary tumor site and at the metastatic site. This interaction occurs through direct cell to cell contact, or by the release of autocrine or paracrine factors which can activate pro-tumor signaling pathways and modulate tumor behavior. In this review, we will highlight recent advances in our current knowledge about the multiple interactions between breast cancer cells and neighboring cells (fibroblasts, endothelial cells, adipocytes, innate and adaptive immune cells) in the tumor microenvironment that coordinate to regulate metastasis. We also highlight the role of exosomes and circulating tumor cells in facilitating breast cancer metastasis. We discuss some key markers associated with stromal cells in the breast tumor environment and their potential to predict patient survival and guide treatment. Finally, we will provide some brief perspectives on how current technologies may lead to the development of more effective therapies for the clinical management of breast cancer patients.

12.
Front Oncol ; 11: 639859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777801

RESUMO

The prolactin inducible protein (PIP) is expressed to varying degrees in more than 90% of breast cancers (BCs). Although high levels of PIP expression in BC has been shown to correlate with better prognosis and patient response to chemotherapy, some studies suggest that PIP may also play a role in metastasis. Here, we investigated the role of PIP in BC using the well-established 4T1 and E0771 mouse BC cell lines. Stable expression of PIP in both cell lines did not significantly alter their proliferation, migration, and response to anticancer drugs in vitro compared to empty vector control. To assess the effect of PIP expression on breast tumorigenesis in vivo, the 4T1 syngeneic transplantable mouse model was utilized. In immunocompetent syngeneic BALB/c mice, PIP-expressing 4T1 primary tumors displayed delayed tumor onset and reduced tumor growth, and this was associated with higher percentages of natural killer cells and reduced percentages of type 2 T-helper cells in the tumor environment. The delayed tumor onset and growth were abrogated in immunodeficient mice, suggesting that PIP-mediated modulation of primary tumor growth involves an intact immune system. Paradoxically, we also observed that PIP expression was associated with a higher number of 4T1 colonies in the lungs in both the immunocompetent and immunodeficient mice. Gene expression analysis of PIP-expressing 4T1 cells (4T1-PIP) revealed that genes associated with tumor metastasis such as CCL7, MMP3 and MMP13, were significantly upregulated in 4T1-PIP cells when compared to the empty vector control (4T1-EV) cells. Collectively, these studies strongly suggest that PIP may possess a double-edge sword effect in BC, enhancing both antitumor immunity as well as metastasis.

13.
Methods Mol Biol ; 2184: 273-280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808232

RESUMO

The isolation of immune cells from the bone marrow is important for obtaining sufficient numbers for downstream analysis. Immune cells derived from the bone marrow may be subjected to metabolic assays for analysis or used to test the effect of infectious agents on immune cells. Here, we describe a process for the isolation of macrophages, dendritic cells, and neutrophils from mice. Using the methods described herein, specific immune cells with purity above 85-90% can be obtained from the bone marrow of mice.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/imunologia , Separação Celular/métodos , Metabolômica/métodos , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Metabolismo Energético/fisiologia , Feminino , Citometria de Fluxo/métodos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/metabolismo
14.
Microorganisms ; 8(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784615

RESUMO

Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections. Leishmaniasis, which is a disease caused by over 20 species of the protozoan parasite belonging to the genus Leishmania, is an important neglected disease. According to the World Health Organization (WHO), an estimated 12 million people are currently infected in about 98 countries and about 2 million new cases occur yearly, resulting in about 50,000 deaths each year. Current treatment methods for leishmaniasis are not very effective and often have significant side effects. In this review, we discussed host immunity to leishmaniasis, various treatment options currently being utilized, and the progress of both immunotherapy and vaccine development strategies used so far in leishmaniasis. We concluded with insights into what the future holds toward the fight against this debilitating parasitic disease.

15.
Cancers (Basel) ; 11(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366131

RESUMO

Breast cancer affects millions of women worldwide, leading to many deaths and significant economic burden. Although there are numerous treatment options available, the huge potentials of immunotherapy in the management of localized and metastatic breast cancer is currently being explored. However, there are significant gaps in understanding the complex interactions between the immune system and breast cancer. The immune system can be pro-tumorigenic and anti-tumorigenic depending on the cells involved and the conditions of the tumor microenvironment. In this review, we discuss current knowledge of breast cancer, including treatment options. We also give a brief overview of the immune system and comprehensively highlight the roles of different cells of the immune system in breast tumorigenesis, including recent research discoveries. Lastly, we discuss some immunotherapeutic strategies for the management of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA