Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 27(11): 644-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21374787

RESUMO

Acrolein is a toxic unsaturated aldehyde and widespread environmental pollutant produced during lipid peroxidation and also by burning of tobacco or liquid fuels. Inhalation or dermal exposure to acrolein could be toxic to organisms. This very reactive aldehyde has a strong affinity for binding to proteins thus forming pathogenic protein-adducts. In the present study we have analyzed formation of bioreactive acrolein-protein adducts in bovine serum albumin solution exposed to exhaust gases of mineral diesel fuel and of mineral diesel fuel supplemented with different amounts of a novel diesel fuel additive denoted Ecodiesel (produced by a genuine procedure of recycling of plant oils used for food preparation). The effects of acrolein-protein adducts were tested on human microvascular endothelial cells and on human osteosarcoma cells that are sensitive to bioactivities of lipid peroxidation products. The results have shown a reduction of the bioreactive acrolein in exhaust gases when mineral diesel was supplemented with 5-20% Ecodiesel. Moreover, acrolein-protein adducts obtained from mineral diesel supplemented with Ecodiesel were less toxic than those obtained from mineral diesel alone. Thus, we assume that supplementing mineral diesel fuel with Ecodiesel would be of benefit for the use of renewable energy, for environment and for human health due to reduced environmental pollution with bioreactive acrolein.


Assuntos
Acroleína/toxicidade , Poluentes Ambientais/toxicidade , Emissões de Veículos/toxicidade , Animais , Bovinos , Linhagem Celular , Gasolina/toxicidade , Humanos , Peroxidação de Lipídeos , Proteínas/metabolismo , Soroalbumina Bovina/química
2.
Polymers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745932

RESUMO

The price of material is an important factor when selecting the additive polymer procedure. In selective laser sintering (SLS), the price can be reduced by the recycling of material, i.e., with different shares of original and recycled material, as well as by the orientation of the product during manufacturing. Numerous tests warn that orientation in the direction of z axis should be as low as possible to reduce the total price of the product. The product also has to satisfy the influence of atmospheric conditions to which it is exposed during its lifetime, i.e., UV radiation and humid environment. UV light, with sun being its most common source, and average humidity in different parts of the world can be approximately from 20% to 90%, depending on time, day and geographic location. In this work, the test specimens have been made of original, mixed and 100% recycled material and then exposed to the influences of UV radiation and water absorption. After having been exposed to atmospheric conditions for a longer time, the mechanical properties of the polyamide products made by selective laser sintering were tested. The results show that exposure to UV radiation reduces tensile elongation at all ratios of recycled material and orientation of 70-90% except in the z direction, while in flexural deformation it is the other way around. The effect of water was observed only between the 7th-14th day of absorption with a decrease in strength until the deformation did not change.

3.
Polymers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471178

RESUMO

The automotive industry is one of the biggest consumers of polymer composites. Aside from good mechanical properties, polymer composites have low mass, which positively affects the overall vehicle weight reduction and improves energy efficiency. Although polymer composites are used in various vehicle components, this paper focused on the application in vehicle bumper production. Two different composite plates with hybrid fiber layup were made; the first plate with a combination of glass and carbon fibers and the second with carbon and aramid. For comparison, and as a cheaper variant, a third plate was made only with glass fibers. In the first two plates, epoxy resin was used as the matrix, while in the third plate, polyester resin was used. Polyurethane memory foams of different densities (60, 80, 100 kg/m3) and thicknesses (10, 15, 20 mm) were used as impact force energy absorbers. With the factorial design of experiments, it was found that the thickness of the memory foam was the main influence factor. Without the use of memory foam, the hybrid composite, made of glass and carbon fibers, showed the highest energy absorption, while with the use of foam, the highest energy absorption was achieved with the glass fiber composite. Without the memory foam, the impact force measured on the glass/carbon hybrid composite was 9319.11 ± 93.18 N. Minimum impact force to the amount of 5143.19 ± 237.65 N was measured when the glass fiber composite plate was combined with the memory foam. When using memory foam, the impact force was reduced by 30%-48%, depending on the type of composite used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA