Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Neural Comput ; 36(4): 744-758, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38457753

RESUMO

Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.

2.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026614

RESUMO

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

3.
Small ; 18(28): e2200882, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35719033

RESUMO

Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.

4.
Nano Lett ; 21(8): 3503-3510, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856222

RESUMO

Molybdenum disulfide (MoS2) has been regarded as one of the most important n-type two-dimensional (2D) transition metal dichalcogenide semiconductors for nanoscale electron devices. Relatively high contact resistance (RC) remains as an issue in the 2D-devices yet to be resolved. Reliable technique is very compelling to practically produce low RC values in device electronics, although scientific approaches have been made to obtain a record-low RC. To resolve this practical issue, we here use thermal-evaporated ultrathin LiF between channel and source/drain metal to fabricate 2D-like MoS2 field effect transistors (FETs) with minimum RC. Under 4-bar FET method, RC less than ∼600 Ω·µm is achieved from the LiF/Au contact MoS2 FET. Our normal 2-bar FET with LiF thus shows the same mobility as that of 4-bar FET that should have no RC in principle. On the basis of these results, ultrathin LiF is also applied for transparent conducting oxide contact, successfully enabling transparent MoS2 FETs.

5.
Nano Lett ; 19(4): 2456-2463, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30855970

RESUMO

Since transition metal dichalcogenide (TMD) semiconductors are found as two-dimensional van der Waals materials with a discrete energy bandgap, many TMD based field effect transistors (FETs) are reported as prototype devices. However, overall reports indicate that threshold voltage ( Vth) of those FETs are located far away from 0 V whether the channel is p- or n-type. This definitely causes high switching voltage and unintended OFF-state leakage current. Here, a facile way to simultaneously modulate the Vth of both p- and n-channel FETs with TMDs is reported. The deposition of various organic small molecules on the channel results in charge transfer between the organic molecule and TMD channels. Especially, HAT-CN molecule is found to ideally work for both p- and n-channels, shifting their Vth toward 0 V concurrently. As a proof of concept, a complementary metal oxide semiconductor (CMOS) inverter with p-MoTe2 and n-MoS2 channels shows superior voltage gain and minimal power consumption after HAT-CN deposition, compared to its initial performance. When the same TMD FETs of the CMOS structure are integrated into an OLED pixel circuit for ambipolar switching, the circuit with HAT-CN film demonstrates complete ON/OFF switching of OLED pixel, which was not switched off without HAT-CN.

6.
Small ; 15(38): e1901793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31379110

RESUMO

Band-like transport behavior of H-doped transition metal dichalcogenide (TMD) channels in field effect transistors (FET) is studied by conducting low-temperature electrical measurements, where MoTe2 , WSe2 , and MoS2 are chosen for channels. Doped with H atoms through atomic layer deposition, those channels show strong n-type conduction and their mobility increases without losing on-state current as the measurement temperature decreases. In contrast, the mobility of unintentionally (naturally) doped TMD FETs always drops at low temperatures whether they are p- or n-type. Density functional theory calculations show that H-doped MoTe2 , WSe2 , and MoS2 have Fermi levels above conduction band edge. It is thus concluded that the charge transport behavior in H-doped TMD channels is metallic showing band-like transport rather than thermal hopping. These results indicate that H-doped TMD FETs are practically useful even at low-temperature ranges.

7.
Nano Lett ; 18(3): 1937-1945, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400979

RESUMO

A van der Waals (vdW) Schottky junction between two-dimensional (2D) transition metal dichalcogenides (TMDs) is introduced here for both vertical and in-plane current devices: Schottky diodes and metal semiconductor field-effect transistors (MESFETs). The Schottky barrier between conducting NbS2 and semiconducting n-MoS2 appeared to be as large as ∼0.5 eV due to their work-function difference. While the Schottky diode shows an ideality factor of 1.8-4.0 with an on-to-off current ratio of 103-105, Schottky-effect MESFET displays little gate hysteresis and an ideal subthreshold swing of 60-80 mV/dec due to low-density traps at the vdW interface. All MESFETs operate with a low threshold gate voltage of -0.5 ∼ -1 V, exhibiting easy saturation. It was also found that the device mobility is significantly dependent on the condition of source/drain (S/D) contact for n-channel MoS2. The highest room temperature mobility in MESFET reaches to approximately more than 800 cm2/V s with graphene S/D contact. The NbS2/n-MoS2 MESFET with graphene was successfully integrated into an organic piezoelectric touch sensor circuit with green OLED indicator, exploiting its predictable small threshold voltage, while NbS2/n-MoS2 Schottky diodes with graphene were applied to extract doping concentrations in MoS2 channel.

8.
Angew Chem Int Ed Engl ; 58(12): 3754-3758, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548756

RESUMO

Black phosphorus (BP) has received much attention owing to its fascinating properties, such as a high carrier mobility and tunable band gap. However, these advantages have been overshadowed by the fast degradation of BP under ambient conditions. To overcome this obstacle, the exact degradation mechanisms need to be unveiled. Herein, we analyzed two sequential degradation processes and the layer-dependent degradation rates of BP in the dark by scanning Kelvin probe microscopy (SKPM) measurements and theoretical modeling. The layer-dependent degradation was successfully interpreted by considering the oxidation model based on the Marcus-Gerischer theory (MGT). In the dark, the electron transfer rate from BP to oxygen molecules depends on the number of layers as these systems have different carrier concentrations. This work not only provides a deeper understanding of the degradation mechanism itself but also suggest new strategies for the design of stable BP-based electronics.

9.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29105986

RESUMO

Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.


Assuntos
DNA/química , Eletricidade , Eletrônica , Sequência de Bases , Termodinâmica
10.
Nano Lett ; 16(2): 1293-8, 2016 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-26771206

RESUMO

Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

11.
Nano Lett ; 15(9): 5778-83, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26274095

RESUMO

We have fabricated dual gate field effect transistors (FETs) with 12 nm-thin black phosphorus (BP) channel on glass substrate, where our BP FETs have a patterned-gate architecture with 30 nm-thick Al2O3 dielectrics on top and bottom of a BP channel. Top gate dielectric has simultaneously been used as device encapsulation layer, controlling the threshold voltage of FETs as well when FETs mainly operate under bottom gate bias. Bottom, top, and dual gate-controlling mobilities were estimated to be 277, 92, and 213 cm(2)/V s, respectively. Maximum ON-current was measured to be ∼5 µA at a drain voltage of -0.1 V but to be as high as ∼50 µA at -1 V, while ON/OFF current ratio appeared to be 3.6 × 10(3) V. As a result, our dual gate BP FETs demonstrate organic light emitting diode (OLED) switching for green and blue OLEDs, also demonstrating NOR logic functions by separately using top- and bottom-input.

12.
Small ; 11(18): 2132-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25641643

RESUMO

Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel.

13.
Small ; 10(23): 4845-50, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25048428

RESUMO

Many electron devices using two-dimensional dichalcogenide MoS2 have been reported beyond graphene, but those were mostly field-effect transistors except few while P-N or Schottky diode form devices should be also important. In the present study, we have fabricated a Pd-driven MoS2 Schottky diode and its related circuits for multifunctional applications: dynamic electrical rectifier, visible light sensor, and hydrogen gas sensor.

14.
Phys Chem Chem Phys ; 16(31): 16367-72, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24985947

RESUMO

On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

15.
ACS Nano ; 18(17): 11404-11415, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629449

RESUMO

High-performance and low operating voltage are becoming increasingly significant device parameters to meet the needs of future integrated circuit (IC) processors and ensure their energy-efficient use in upcoming mobile devices. In this study, we suggest a hybrid dual-gate switching device consisting of the vertically stacked junction and metal-insulator-semiconductor (MIS) gate structure, named J-MISFET. It shows excellent device performances of low operating voltage (<0.5 V), drain current ON/OFF ratio (∼4.7 × 105), negligible hysteresis window (<0.5 mV), and near-ideal subthreshold slope (SS) (60 mV/dec), making it suitable for low-power switching operation. Furthermore, we investigated the switchable NAND/NOR logic gate operations and the photoresponse characteristics of the J-MISFET under the small supply voltage (0.5 V). To advance the applications further, we successfully demonstrated an integrated optoelectronic security logic system comprising 2-electric inputs (for encrypted data) and 1-photonic input signal (for password key) as a hardware security device for data protection. Thus, we believe that our J-MISFET, with its heterogeneous hybrid gate structures, will illuminate the path toward future device configurations for next-generation low-power electronics and multifunctional security logic systems in a data-driven society.

16.
ACS Nano ; 18(11): 8546-8554, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456657

RESUMO

Monoclinic semiconducting ß-Ga2O3 has drawn attention, particularly because its thin film could be achieved via mechanical exfoliation from bulk crystals, which is analogous to van der Waals materials' behavior. For the transistor devices with exfoliated ß-Ga2O3, the channel direction becomes [010] for in-plane electron transport, which changes to vertical [100] near the source/drain (S/D) contact. Hence, anisotropic transport behavior is certainly worth to study but rarely reported. Here we achieve the vertical [100] direction electron mobility of 4.18 cm2/(V s) from Pt/ß-Ga2O3 Schottky diodes with various thickness via radio frequency-transmission line method (RF-TLM), which is recently developed. The specific contact resistivity (ρc) could also be estimated from RF-TLM, to be 4.72 × 10-5 Ω cm2, which is quite similar to the value (5.25 × 10-5 Ω cm2) from conventional TLM proving the validity of RF-TLM. We also fabricate metal-semiconductor field-effect transistors (MESFETs) to study anisotropic transport behavior and contact resistance (RC). RC-free [010] in-plane mobility appears as high as maximum ∼67 cm2/(V s), extracted from total resistance in MESFETs.

17.
Nat Commun ; 15(1): 129, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167379

RESUMO

Memristor-integrated passive crossbar arrays (CAs) could potentially accelerate neural network (NN) computations, but studies on these devices are limited to software-based simulations owing to their poor reliability. Herein, we propose a self-rectifying memristor-based 1 kb CA as a hardware accelerator for NN computations. We conducted fully hardware-based single-layer NN classification tasks involving the Modified National Institute of Standards and Technology database using the developed passive CA, and achieved 100% classification accuracy for 1500 test sets. We also investigated the influences of the defect-tolerance capability of the CA, impact of the conductance range of the integrated memristors, and presence or absence of selection functionality in the integrated memristors on the image classification tasks. We offer valuable insights into the behavior and performance of CA devices under various conditions and provide evidence of the practicality of memristor-integrated passive CAs as hardware accelerators for NN applications.

18.
ACS Appl Mater Interfaces ; 16(9): 12095-12105, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38384197

RESUMO

Two-dimensional transition metal dichalcogenides (2D TMDCs) are considered promising alternatives to Si as channel materials because of the possibility of retaining their superior electronic transport properties even at atomic body thicknesses. However, the realization of high-performance 2D TMDC field-effect transistors remains a challenge owing to Fermi-level pinning (FLP) caused by gap states and the inherent high Schottky barrier height (SBH) within the metal contact and channel layer. This study demonstrates that high-quality van der Waals (vdW) heterojunction-based contacts can be formed by depositing semimetallic TiS2 onto monolayer (ML) MoS2. After confirming the successful formation of a TiS2/ML MoS2 heterojunction, the contact properties of vdW semimetal TiS2 were thoroughly investigated. With clean interfaces of the TiS2/ML MoS2 heterojunctions, atomic-layer-deposited TiS2 can induce gap-state saturation and suppress FLP. Consequently, compared with conventional evaporated metal electrodes, the TiS2/ML MoS2 heterojunctions exhibit a lower SBH of 8.54 meV and better contact properties. This, in turn, substantially improves the overall performance of the device, including its on-current, subthreshold swing, and threshold voltage. Furthermore, we believe that our proposed strategy for vdW-based contact formation will contribute to the development of 2D materials used in next-generation electronics.

19.
Adv Mater ; 36(29): e2314274, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38647521

RESUMO

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

20.
Phys Chem Chem Phys ; 15(8): 2660-4, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340850

RESUMO

We have fabricated transparent top-gate ZnO nanowire (NW) field effect transistors (FETs) on glass and measured their trap density-of-states (DOS) at the dielectric/ZnO NW interface with monochromatic photon beams during their operation. Our photon-probe method showed clear signatures of charge trap DOS at the interface, located near 2.3, 2.7, and 2.9 eV below the conduction band edge. The DOS information was utilized for the photo-detecting application of our transparent NW-FETs, which demonstrated fast and sensitive photo-detection of visible lights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA