Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2214765120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406097

RESUMO

The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.


Assuntos
Apicoplastos , Malária , Parasitos , Animais , Apicoplastos/genética , Apicoplastos/metabolismo , Parasitos/genética , Parasitos/metabolismo , Sinais (Psicologia) , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária/metabolismo , Proteínas de Protozoários/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(34): e2208277119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969755

RESUMO

Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5'-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.


Assuntos
Proteínas de Cloroplastos , Proteínas de Ligação ao GTP , Rodófitas , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transporte Proteico , Rodófitas/metabolismo
3.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682733

RESUMO

Understanding the functional information of all genes and the biological mechanism based on the comprehensive genome regulation mechanism is an important task in life science. YgfI is an uncharacterized LysR family transcription factor in Escherichia coli. To identify the function of YgfI, the genomic SELEX (gSELEX) screening was performed for YgfI regulation targets on the E. coli genome. In addition, regulatory and phenotypic analyses were performed. A total of 10 loci on the E. coli genome were identified as the regulatory targets of YgfI with the YgfI binding activity. These predicted YgfI target genes were involved in biofilm formation, hydrogen peroxide resistance, and antibiotic resistance, many of which were expressed in the stationary phase. The TCAGATTTTGC sequence was identified as an YgfI box in in vitro gel shift assay and DNase-I footprinting assays. RT-qPCR analysis in vivo revealed that the expression of YgfI increased in the stationary phase. Physiological analyses suggested the participation of YgfI in biofilm formation and an increase in the tolerability against hydrogen peroxide. In summary, we propose to rename ygfI as srsR (a stress-response regulator in stationary phase).


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant J ; 97(3): 485-499, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30351485

RESUMO

The target of rapamycin (TOR) signaling pathway is involved in starch accumulation in various eukaryotic organisms; however, the molecular mechanism behind this phenomenon in eukaryotes has not been elucidated. We report a regulatory mechanism of starch accumulation by TOR in the unicellular red alga, Cyanidioschyzon merolae. The starch content in C. merolae after TOR-inactivation by rapamycin, a TOR-specific inhibitor, was increased by approximately 10-fold in comparison with its drug vehicle, dimethyl sulfoxide. However, our previous transcriptome analysis showed that the expression level of genes related to carbohydrate metabolism was unaffected by rapamycin, indicating that starch accumulation is regulated at post-transcriptional levels. In this study, we performed a phosphoproteome analysis using liquid chromatography-tandem mass spectrometry to investigate potential post-transcriptional modifications, and identified 52 proteins as candidate TOR substrates. Among the possible substrates, we focused on the function of CmGLG1, because its phosphorylation at the Ser613 residue was decreased after rapamycin treatment, and overexpression of CmGLG1 resulted in a 4.7-fold higher starch content. CmGLG1 is similar to the priming protein, glycogenin, which is required for the initiation of starch/glycogen synthesis, and a budding yeast complementation assay demonstrated that CmGLG1 can functionally substitute for glycogenin. We found an approximately 60% reduction in the starch content in a phospho-mimicking CmGLG1 overexpression strain, in which Ser613 was substituted with aspartic acid, in comparison with the wild-type CmGLG1 overexpression cells. Our results indicate that TOR modulates starch accumulation by changing the phosphorylation status of the CmGLG1 Ser613 residue in C. merolae.


Assuntos
Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Rodófitas/genética , Transdução de Sinais , Amido/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucosiltransferases/genética , Glicoproteínas/genética , Fosforilação , Rodófitas/fisiologia , Serina-Treonina Quinases TOR/genética
5.
Plant Cell Physiol ; 61(4): 675-684, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105317

RESUMO

Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.


Assuntos
Biomassa , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Sirolimo/farmacologia , Autofagia/efeitos dos fármacos , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Microalgas/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Plant J ; 94(2): 327-339, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29441718

RESUMO

Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.


Assuntos
Proteínas de Algas/metabolismo , Cloroplastos/metabolismo , Ligases/genética , RNA de Cloroplastos/metabolismo , RNA Ribossômico/metabolismo , Rodófitas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Algas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ligases/metabolismo
7.
Plant Cell Physiol ; 59(11): 2308-2316, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099537

RESUMO

The nuclear genome of the unicellular red alga Cyanidioschyzon merolae can be modified by homologous recombination with exogenously introduced DNA. However, it is presently difficult to modify multiple chromosome loci because of the limited number of available positive selectable markers. In this study, we constructed a modified URA5.3 gene (URA5.3T), which can be repeatedly used for nuclear genome transformation, as well as two plasmid vectors for 3× FLAG- or 3× Myc-epitope tagging of nuclear-encoded proteins using URA5.3T. In the URA5.3T marker, the promoter region and open reading frame were located between directly repeated URA5.3 terminator sequences, and the URA5.3 gene can be eliminated by 5-fluoroorotic acid selection through homologous recombination. To demonstrate the utility of the constructed system, a 3× FLAG-tag and 3× Myc-tag were introduced at the C-termini of two of the six Rab proteins in C. merolae, CmRab18 and CmRab7, respectively, and the differential expression levels were successfully monitored by immunoblot analysis using these epitope tags. The URA5.3T marker's introduction and elimination cycle can be repeated. Thus, we have constructed a marker recycling system for C. merolae nuclear transformation. A novel procedure to obtain a high plating efficiency of C. merolae cells on solid gellan gum plates is also presented.


Assuntos
Núcleo Celular/genética , Epitopos/genética , Genes de Plantas/genética , Rodófitas/genética , Marcadores Genéticos/genética , Immunoblotting , Fases de Leitura Aberta/genética , Plastídeos/genética , Regiões Promotoras Genéticas/genética , Rodófitas/metabolismo
8.
Plant Mol Biol ; 89(3): 309-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26350402

RESUMO

Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Microalgas/fisiologia , Rodófitas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Nitrogênio , Rodófitas/genética , Serina-Treonina Quinases TOR/genética , Regulação para Cima
9.
Plant Cell Physiol ; 56(10): 1962-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272551

RESUMO

Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation.


Assuntos
Cianobactérias/enzimologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/metabolismo , Rodófitas/enzimologia , Rodófitas/metabolismo , Triglicerídeos/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/genética , Rodófitas/genética
10.
Biosci Biotechnol Biochem ; 78(1): 175-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036501

RESUMO

The unicellular red alga Cyanidioschyzon merolae is used as a model organism to investigate the basic architecture of photosynthetic eukaryotes. We established a stable expression system for the green fluorescent protein fused with the phycocyanin-associated rod linker (APCC) protein in C. merolae, which was clearly localized on the plastid. This system should be useful in the genetic engineering of C. merolae.


Assuntos
Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Rodófitas/genética , Expressão Gênica , Genômica , Rodófitas/citologia , Transformação Genética
11.
J Gen Appl Microbiol ; 69(5): 287-291, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37587047

RESUMO

 Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.


Assuntos
Fosfitos , Rodófitas , Fosfitos/metabolismo , NADH NADPH Oxirredutases/genética , Rodófitas/genética , Fósforo
12.
Microorganisms ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257942

RESUMO

Glycogen, the stored form of glucose, accumulates upon growth arrest in the presence of an excess carbon source in Escherichia coli and other bacteria. Chromatin immunoprecipitation screening for the binding site of a functionally unknown GntR family transcription factor, YegW, revealed that the yegTUV operon was a single target of the E. coli genome. Although none of the genes in the yegTUV operon have a clear function, a previous study suggested their involvement in the production of ADP-glucose (ADPG), a glycogen precursor. Various validation through in vivo and in vitro experiments showed that YegW is a single-target transcription factor that acts as a repressor of yegTUV, with an intracellular concentration of consistently approximately 10 molecules, and senses ADPG as an effector. Further analysis revealed that YegW repressed glycogen accumulation in response to increased glucose concentration, which was not accompanied by changes in the growth phase. In minimal glucose medium, yegW-deficient E. coli promoted glycogen accumulation, at the expense of poor cell proliferation. We concluded that YegW is a single-target transcription factor that senses ADPG and represses glycogen accumulation in response to the amount of glucose available to the cell. We propose renaming YegW to GgaR (repressor of glycogen accumulation).

13.
Sci Rep ; 14(1): 14716, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961078

RESUMO

Microalgae are considered to be more useful and effective to use in biomass production than other photosynthesis organisms. However, microalgae need to be altered to acquire more desirable traits for the relevant purpose. Although neutron radiation is known to induce DNA mutations, there have been few studies on its application to microalgae, and the optimal relationship between irradiation intensity and mutation occurrence has not been established. In this study, using the unicellular red alga Cyanidioschyzon merolae as a model, we analyzed the relationship between the absorbed dose of two types of neutrons, high-energy (above 1 MeV) and thermal (around 25 meV) neutrons, and mutation occurrence while monitoring mutations in URA5.3 gene encoding UMP synthase. As a result, the highest mutational occurrence was observed when the cells were irradiated with 20 Gy of high-energy neutrons and 13 Gy of thermal neutrons. Using these optimal neutron irradiation conditions, we next attempted to improve the lipid accumulation of Euglena gracilis, which is a candidate strain for biofuel feedstock production. As a result, we obtained several strains with a maximum 1.3-fold increase in lipid accumulation compared with the wild-type. These results indicate that microalgae breeding by neutron irradiation is effective.


Assuntos
Euglena gracilis , Metabolismo dos Lipídeos , Euglena gracilis/genética , Euglena gracilis/efeitos da radiação , Euglena gracilis/metabolismo , Metabolismo dos Lipídeos/efeitos da radiação , Metabolismo dos Lipídeos/genética , Microalgas/genética , Microalgas/efeitos da radiação , Microalgas/metabolismo , Nêutrons , Mutação , Biomassa , Lipídeos , Biocombustíveis
14.
Biochem Biophys Res Commun ; 439(2): 264-9, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23973485

RESUMO

The target of rapamycin (TOR) is serine/threonine protein kinase that is highly conserved among eukaryotes and can be inactivated by the antibiotic rapamycin through the formation of a ternary complex composed of rapamycin and two proteins, TOR and FKBP12. Differing from fungi and animals, plant FKBP12 proteins are unable to form the ternary complex, and thus plant TORs are insensitive to rapamycin. This has led to a poor understanding of TOR functions in plants. As a first step toward the understanding of TOR function in a rapamycin-insensitive unicellular red alga, Cyanidioschyzon merolae, we constructed a rapamycin-susceptible strain in which the Saccharomyces cerevisiae FKBP12 protein (ScFKBP12) was expressed. Treatment with rapamycin resulted in growth inhibition and decreased polysome formation in this strain. Binding of ScFKBP12 with C. merolae TOR in the presence of rapamycin was demonstrated in vivo and in vitro by pull-down experiments. Moreover, in vitro kinase assay showed that inhibition of C. merolae TOR kinase activity was dependent on ScFKBP12 and rapamycin.


Assuntos
Antifúngicos/farmacologia , Rodófitas/efeitos dos fármacos , Rodófitas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética , Proteínas de Algas/antagonistas & inibidores , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Antibacterianos/farmacologia , Clonagem Molecular , Resistência Microbiana a Medicamentos , Expressão Gênica , Rodófitas/citologia , Rodófitas/crescimento & desenvolvimento , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Commun Biol ; 6(1): 1285, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145988

RESUMO

The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo 13C-labeled CO2 assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.


Assuntos
Guanosina Tetrafosfato , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Nitrogênio/metabolismo , Regulon , Homeostase
16.
Nat Plants ; 9(4): 661-672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997687

RESUMO

Chloroplasts are a common feature of plant cells and aspects of their metabolism, including photosynthesis, are influenced by low-temperature conditions. Chloroplasts contain a small circular genome that encodes essential components of the photosynthetic apparatus and chloroplast transcription/translation machinery. Here, we show that in Arabidopsis, a nuclear-encoded sigma factor that controls chloroplast transcription (SIGMA FACTOR5) contributes to adaptation to low-temperature conditions. This process involves the regulation of SIGMA FACTOR5 expression in response to cold by the bZIP transcription factors ELONGATED HYPOCOTYL5 and ELONGATED HYPOCOTYL5 HOMOLOG. The response of this pathway to cold is gated by the circadian clock, and it enhances photosynthetic efficiency during long-term cold and freezing exposure. We identify a process that integrates low-temperature and circadian signals, and modulates the response of chloroplasts to low-temperature conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Arabidopsis/metabolismo , Fotossíntese , Regulação da Expressão Gênica de Plantas
17.
Proc Natl Acad Sci U S A ; 106(30): 12548-53, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19592510

RESUMO

Plant cells sense environmental nitrogen levels and alter their gene expression accordingly to survive; however, the underlying regulatory mechanisms still remains to be elucidated. Here, we identified and characterized a transcription factor that is responsible for expression of nitrogen assimilation genes in a unicellular red alga Cyanidioschyzon merolae. DNA microarray and Northern blot analyses revealed that transcript of the gene encoding CmMYB1, an R2R3-type MYB transcription factor, increased 1 h after nitrogen depletion. The CmMYB1 protein started to accumulate after 2 h and reached a peak after 4 h after nitrogen depletion, correlating with the expression of key nitrogen assimilation genes, such as CmNRT, CmNAR, CmNIR, CmAMT, and CmGS. Although the transcripts of these nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of preferred nitrogen source such as ammonium or glutamine, suggesting the presence of a nitrogen catabolite repression (NCR) mechanism. The nitrogen depletion-induced gene expression disappeared in a CmMYB1-null mutant, and the mutant showed decreased cell viability after exposure to the nitrogen-depleted conditions compared with the parental strain. Chromatin immunoprecipitation analysis demonstrated that CmMYB1 specifically occupied these nitrogen-responsive promoter regions only under nitrogen-depleted conditions, and electrophoretic mobility shift assays using crude cell extract revealed specific binding of CmMYB1, or a complex containing CmMYB1, to these promoters. Thus, the presented results indicated that CmMYB1 is a central nitrogen regulator in C. merolae.


Assuntos
Proteínas de Algas/genética , Nitrogênio/metabolismo , Rodófitas/genética , Fatores de Transcrição/genética , Proteínas de Algas/metabolismo , Sítios de Ligação , Northern Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Immunoblotting , Microscopia de Fluorescência , Mutação , Nitratos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Compostos de Amônio Quaternário/farmacologia , Elementos de Resposta/genética , Rodófitas/metabolismo , Fatores de Transcrição/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(16): 6860-5, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19342483

RESUMO

Although regulation of sigma factors has been intensively investigated, anti-sigma factors have not been identified in oxygenic photosynthetic organisms. A previous study suggested that the sigma factor, SigE, of the cyanobacterium Synechocystis sp. PCC 6803, a positive regulator of sugar catabolism, is posttranslationally activated by light-to-dark transition. In the present study, we found that the H subunit of Mg-chelatase ChlH interacts with sigma factor SigE by yeast two-hybrid screening, and immunoprecipitation analysis revealed that ChlH associates with SigE in a light-dependent manner in vivo. We also found that Mg(2+) promotes the interaction of SigE and ChlH and determines their localization in vitro. In vitro transcription analysis demonstrated that ChlH inhibits the transcription activity of SigE. Based on these results, we propose a model in which ChlH functions as an anti-sigma factor, transducing light signals to SigE in a process mediated by Mg(2+).


Assuntos
Proteínas de Bactérias/metabolismo , Liases/metabolismo , Subunidades Proteicas/metabolismo , Fator sigma/metabolismo , Synechocystis/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Imunoprecipitação , Luz , Magnésio/farmacologia , Modelos Biológicos , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação
19.
Front Plant Sci ; 13: 1036839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589047

RESUMO

Photosynthetic organisms maintain optimum levels of photosynthetic pigments in response to environmental changes to adapt to the conditions. The identification of cyanobacteria strains that alleviate bleaching has revealed genes that regulate levels of phycobilisome, the main light-harvesting complex. In contrast, the mechanisms of pigment degradation in algae remain unclear, as no nonbleaching strains have previously been isolated. To address this issue, this study attempted to isolate nonbleaching strains of the unicellular red alga Cyanidioschyzon merolae after exposure to nitrogen (N)-depletion based on autofluorescence information. After four weeks under N-depletion, 13 cells from 500,000 cells with almost identical pre- and post-depletion chlorophyll a (Chl a) and/or phycocyanin autofluorescence intensities were identified. These nonbleaching candidate strains were sorted via a cell sorter, isolated on solid medium, and their post-N-depletion Chl a and phycocyanin levels were analyzed. Chl a levels of these nonbleaching candidate strains were lower at 1-4 weeks of N-depletion similar to the control strains, however, their phycocyanin levels were unchanged. Thus, we successfully isolated nonbleaching C. merolae strains in which phycocyanin was not degraded under N-depletion, via autofluorescence spectroscopy and cell sorting. This versatile method will help to elucidate the mechanisms regulating pigments in microalgae.

20.
Front Plant Sci ; 13: 821947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360310

RESUMO

Nitrogen assimilation is an essential process that controls plant growth and development. Plant cells adjust the transcription of nitrogen assimilation genes through transcription factors (TFs) to acclimatize to changing nitrogen levels in nature. However, the regulatory mechanisms of these TFs under nitrogen-repleted (+N) conditions in plant lineages remain largely unknown. Here, we identified a negative domain (ND) of CmMYB1, the nitrogen-depleted (-N)-activated TF, in a unicellular red alga Cyanidioschyzon merolae. The ND deletion changed the localization of CmMYB1 from the cytoplasm to the nucleus, enhanced the binding efficiency of CmMYB1 to promoters of nitrate assimilation genes, and increased the transcripts of nitrate assimilation genes under +N condition. A pull-down assay using an ND-overexpressing strain combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis helped us to screen and identify an unknown-function protein, the CmNDB1. Yeast two-hybrid analysis demonstrated that CmNDB1 interacts with ND. Similar to ND deletion, CmNDB1 deletion also led to the nucleus localization of CmMYB1, enhanced the promoter-binding ratio of CmMYB1 to the promoter regions of nitrate assimilation genes, and increased transcript levels of nitrate assimilation genes under +N condition. Thus, these presented results indicated that ND and CmNDB1 negatively regulate CmMYB1 functions under the +N condition in C. merolae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA